Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

Covered by SCOPUS

CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2017: 99.90

Open Access
See all formats and pricing
More options …

Autonomy in surgical robots and its meaningful human control

Fanny Ficuciello
  • Corresponding author
  • Department of Electrical Engineering and Information Technology, University of Naples Federico II, via Claudio, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guglielmo Tamburrini
  • Department of Electrical Engineering and Information Technology, University of Naples Federico II, via Claudio, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alberto Arezzo / Luigi Villani
  • Department of Electrical Engineering and Information Technology, University of Naples Federico II, via Claudio, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Siciliano
  • Department of Electrical Engineering and Information Technology, University of Naples Federico II, via Claudio, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-01-01 | DOI: https://doi.org/10.1515/pjbr-2019-0002


This article focuses on ethical issues raised by increasing levels of autonomy for surgical robots. These ethical issues are explored mainly by reference to state-ofart case studies and imminent advances in Minimally Invasive Surgery (MIS) and Microsurgery. In both area, surgicalworkspace is limited and the required precision is high. For this reason, increasing levels of robotic autonomy can make a significant difference there, and ethically justified control sharing between humans and robots must be introduced. In particular, from a responsibility and accountability perspective suitable policies for theMeaningfulHuman Control (MHC) of increasingly autonomous surgical robots are proposed. It is highlighted how MHC should be modulated in accordance with various levels of autonomy for MIS and Microsurgery robots. Moreover, finer MHC distinctions are introduced to deal with contextual conditions concerning e.g. soft or rigid anatomical environments.

Keywords: RAS,MIS; microsurgery; ethics; meaningful human control; shared-control; human-robot interaction


  • [1] N. Bhuta, S. Beck, R. Geiß, H.-Y. Liu, C. Kreß, Autonomous Weapons Systems, Law, Ethics, Policy, Cambridge University Press, 2016Google Scholar

  • [2] M. Maurer, J. C. Gerdes, B. Lenz, H. Winner, Autonomes Fahren: Technische, rechtliche und gesellschaftliche Aspekte, Springer Verlag, Berlin Heidelberg, Germany, 2015Google Scholar

  • [3] G.-Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E. Dupont, et al., Medical robotics - regulatory, ethical, and legal considerations for increasing levels of autonomy, Science Robotics, 2017, 2(4), DOI: 10.1126/scirobotics.aam8638CrossrefGoogle Scholar

  • [4] M. Yip, N. Das, Robot autonomy for surgery, CoRR, 2017, http: //arxiv.org/abs/1707.03080Google Scholar

  • [5] Structuring debate on autonomous weapons systems, Briefing Paper, Article 36, November 2013, http://www.article36.org/wp-content/uploads/2013/11/Autonomous-weapons-memofor-CCW.pdfGoogle Scholar

  • [6] F. Santoni de Sio, J. van den Hoven, Meaningful human control over autonomous systems: A philosophical account, Frontiers in Robotics and AI, 2018, 5, Art. 15, DOI: 10.3389/frobt.2018.00015CrossrefGoogle Scholar

  • [7] Da Vinci research xi surgical system web page, https:intuitivesurgical.com/products/da-vinci-xi/Google Scholar

  • [8] S. Atallah, F. Quinteros, B. Martin-Perez, S. Larach, Robotic transanal surgery for local excision of rectal neoplasms, Journal of Robotic Surgery, 2014, 8(2), 193-194Google Scholar

  • [9] E. Vander Poorten, L. Esteveny, A. Gijbels, B. Rosa, L. Schoevaerdts, K. Willekens, et al., Use case for european robotics in ophthalmologic micro-surgery, In: Proceedings of the 5th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Brussels, Belgium, 10-12 September 2015, 78-80Google Scholar

  • [10] S. Hirche,M. Buss, Human-oriented control for haptic teleoperation, In: Proceedings of the IEEE, 2012, 100(3), 623-647Google Scholar

  • [11] J. van den Berg, S. Miller, D. Duckworth, H. Hu, A.Wan, X. Y. Fu, et al., Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations, In: 2010 IEEE International Conference on Robotics and Automation,May 2010, 2074-2081Google Scholar

  • [12] A.Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, et al., Learning by observation for surgical subtasks: Multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms, In: 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, 1202-1209Google Scholar

  • [13] C. E. Reiley, E. Plaku, G. D. Hager, Motion generation of robotic surgical tasks: Learning from expert demonstrations, In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Aug 2010, 967-970Google Scholar

  • [14] Y. Kassahun, B. Yu, A. T. Tibebu, D. Stoyanov, S. Giannarou, J. H. Metzen, E. Vander Poorten, Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions, International Journal of Computer Assisted Radiology and Surgery, 2015, 11(4), 553-568Google Scholar

  • [15] B. C. Becker, R. A. MacLachlan, G. D. Hager, C. N. Riviere, Handheld micromanipulation with vision-based virtual fixtures, In: 2011 IEEE International Conference on Robotics and Automation, May 2011, 4127-4132CrossrefGoogle Scholar

  • [16] D. Aarno, S. Ekvall, D. Kragic, Adaptive virtual fixtures for machine-assisted teleoperation tasks, In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, April 2005, 1139-1144Google Scholar

  • [17] Z. Pezzementi, A. M. Okamura, G. D. Hager, Dynamic guidance with pseudoadmittance virtual fixtures, In: Proceedings 2007 IEEE International Conference on Robotics and Automation, April 2007, 1761-1767Google Scholar

  • [18] A. R. Ferreres, M. Patti, Ethical issues in the introduction of new technologies: From mis to poem, World Journal of Surgery, 2015, 39(7), 1642-1648Google Scholar

  • [19] Z. Chen, A. Malpani, P. Chalasani, A. Deguet, S. S. Vedula, P. Kazanzides, R. H. Taylor, Virtual fixture assistance for needle passing and knot tying, In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2016, 2343-2350Google Scholar

  • [20] S. A. Bowyer, B. L. Davies, F. Rodriguez y Baena. Active constraints/virtual fixtures: A survey. IEEE Transactions on Robotics, 2014, 30(1), 138-157CrossrefGoogle Scholar

  • [21] S. Iyer, T. Looi, J. Drake, A single arm, single camera system for automated suturing, In: 2013 IEEE International Conference on Robotics and Automation, May 2013, 239-244Google Scholar

  • [22] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, K. Goldberg, Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization, In: 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, 4178-4185Google Scholar

  • [23] R. C. Jackson, M. C. Çavusoglu, Needle path planning for autonomous robotic surgical suturing, In: 2013 IEEE International Conference on Robotics and Automation,May 2013, 1669-1675Google Scholar

  • [24] A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, P. C. W. Kim, Supervised autonomous robotic soft tissue surgery, Science Translational Medicine, 2016, 8, 337-364Google Scholar

  • [25] M. Hoeckelmann, I. J. Rudas, P. Fiorini, F. Kirchner, T. Haidegger, Current capabilities and development potential in surgical robotics, International Journal of Advanced Robotic Systems, 2015, 12(5), 61Google Scholar

  • [26] M. Jakopec, S. J. Harris, F. Rodriguez y Baena, P. Gomes, B. L. Davies, Acrobot: a "hands-on" robot for total knee replacement surgery, In: Proceedings of the 7th International Workshop on Advanced Motion Control, 2002, 116-120Google Scholar

  • [27] B. Hagag, R. Abovitz, H. Kang, B. Schmitz, M. Conditt. Surgical Robotics, chapter RIO: Robotic-Arm Interactive Orthopedic System MAKOplasty: User Interactive Haptic Orthopedic Robotics, Springer, Boston, MA, 2011Google Scholar

  • [28] N. A. Netravali, M. Börner,W. L. Bargar, Computer-AssistedMusculoskeletal Surgery, chapter The Use of ROBODOC in Total Hip and Knee Arthroplasty, Springer, Cham, 2016Google Scholar

  • [29] S. Dieterich, I. C. Gibbs, The cyberknife in clinical use: Current roles, future expectations, Frontiers of Radiation Therapy and Oncology, 2011, 43, 181-194CrossrefGoogle Scholar

  • [30] T. Varma, P. Eldridge, Use of the neuromate stereotactic robot in a frameless mode for functional neurosurgery, The International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2, 107-113CrossrefGoogle Scholar

  • [31] W. L. Bargar, A. Bauer, M. Bfrner, Primary and revision total hip replacement using the robodoc system, Clinical Orthopaedics and Related Research, 1998, 354, 82-91Google Scholar

  • [32] S. Nishihara, N. Sugano, T. Nishii, H. Miki, N. Nakamura, H. Yoshikawa, Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty, The Journal of Arthroplasty, 2006, 21, 957-966CrossrefGoogle Scholar

  • [33] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, K. M. Konstantinidis. Evolution of autonomous and semiautonomous robotic surgical systems: a review of the literature, The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(4), 375-392CrossrefGoogle Scholar

  • [34] M.A. Poumellec, R. Foissac, M. Cegarra-Escolano, E. Barranger, T. Ihrai, Surgical treatment of secondary lymphedema of the upper limb by stepped microsurgical lymphaticovenous anastomoses, Breast Cancer Research and Treatment, 2017, 162, 219-224Google Scholar

  • [35] J. M. Sabino, J. Slater, I. L. Valerio, Plastic surgery challenges in war wounded I: Flap-based extremity reconstruction, Advances in Wound Care, 2016, 5(9), 403-411Google Scholar

  • [36] I. Ahmadi, P. Herle, G. Miller, D. J. Hunter-Smith, J. Leong, W. M. Rozen, End-to-end versus end-to-side microvascular anastomosis: A meta-analysis of free flap outcomes, Journal of Reconstructive Microsurgery, 2017, 33(6), 402-411CrossrefGoogle Scholar

  • [37] A. Ebrahimi, M. H. Kalantar Motamedi, A. Ebrahimi, M. Kazemi, A. Shams, H. Hashemzadeh, Lip reconstruction after tumor ablation, World Journal of Plastic Surgery, 2016, 5(1),15-25Google Scholar

  • [38] S. Safavi-Abbasi, M. Y. Kalani, B. Frock, H. Sun, K. Yagmurlu, F. Moron, et al., Techniques and outcomes of microsurgical management of ruptured and unruptured fusiform cerebral aneurysms. Journal of Neurosurgery, 2017, 127(6), 1353-1360Google Scholar

  • [39] C. F. Lee, J. C. Lu, A. Zidan, C. S. Lee, T. H. Wu, K. M. Chan, W. C. Lee, Microscope-assisted hepatic artery reconstruction in adult living donor liver transplantation - a review of 325 consecutive cases in a single center, Clinical Transplantation, 2017, 31(2)Google Scholar

  • [40] D. Minckler, Microinvasive glaucoma surgery: A new era in therapy, Clinical and Experimental Ophthalmology, 2016, 44(7), 543-544CrossrefGoogle Scholar

  • [41] M. R. Kesting, S. Koerdt, N. Rommel, T. Mücke, K. D. Wolff, C. P. Nobis, et al., Classification of orbital exenteration and reconstruction, Journal of Cranio-Maxillo-Facial Surgery, 2017, 45(4), 467-473CrossrefGoogle Scholar

  • [42] A. Gijbels, E. B. Vander Poorten, P. Stalmans, D. Reynaerts, Development and experimental validation of force sensing needle for robotically assisted retinal vein cannulations, In: IEEE International Conference on Robotics and Automation, Seattle, Washingon, 26-30 May 2015, 2270-2276Google Scholar

  • [43] G. C. Lim, F. C. Holsinger, R. J. Li, Transoral endoscopic head and neck surgery: The contemporary treatment of head and neck cancer, Hematology/Oncology Clinics of North America, 2015, 29(6), 1075-1092Google Scholar

  • [44] C. Suárez, J. P. Rodrigo, Transoral microsurgery for treatment of laryngeal and pharyngeal cancers, Current Oncology Reports, 2013, 15(2),134-143CrossrefGoogle Scholar

  • [45] J. S. Brown, D. Lowe, A. Kanatas, A. Schache,Mandibular reconstructionwith vascularised bone flaps: A systematic review over 25 years, British Journal of Oral andMaxillofacial Surgery, 2017, 55(2), 113-126Google Scholar

  • [46] Q. Qassemyar, P. Aguilar, S. Temam, F. Kolb, P. Gorphe, The thin ALT perforator flap for oropharyngeal robotic-assisted reconstruction, Annales de Chirurgie Plastique Esthétique, 2017, 62(1), 1-7Google Scholar

  • [47] F. M. Leclère, V. Casoli, Composite neuromusculofasciocutaneous triceps brachii free flap for complex foot reconstructive surgery, Hand Surgery & Rehabilitation, 2016, 35, 148-152Google Scholar

  • [48] H. Vester, S. Deiler, Strategies for complex injuries of the hand, Der Unfallchirurg, 2017, 120(3), 237-251Google Scholar

  • [49] G. Mattiassich, F. Rittenschober, L. Dorninger, J. Rois, R. Mittermayr, R. Ortmaier, et al., Long-term outcome following upper extremity replantation after major traumatic amputation, BMC Musculoskeletal Disorders, 2017, 18(1), 77CrossrefGoogle Scholar

  • [50] S. Zuo, S. Wang, Current and emerging robotic assisted intervention for notes, Expert Review of Medical Devices, 2016, 13(12), 1095-1105Google Scholar

  • [51] A. Gudeloglu, J. V. Brahmbhatt, S. J. Parekattil, Robotic-assisted microsurgery for an elective microsurgical practice, Seminars in Plastic Surgery, 2014, 28(1), 11-19Google Scholar

  • [52] G. R. Sutherland, S. Lama, L. S. Gan, S. Wolfsberger, K. Zereinia, Merging machines with microsurgery: Clinical experience with neuroarm, Journal of Neurosurgery, 2013, 118(3), 521-529CrossrefGoogle Scholar

  • [53] W. Hunter, T. Doukoglou, S. R. Lafontaine, P. G. Charette, L. A. Jones, M. A. Sagar, et al., A teleoperated microsurgical robot and associated virtual environment for eye surgery, Presence, 1993, 2(4), 265-280Google Scholar

  • [54] A. Üneri, M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, I. Iordachita, New steady-hand eye robot with micro-force sensing for vitreoretinal surgery, In: 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, Sept 2010, 814-819Google Scholar

  • [55] Patent number wo 2016030767 a1, Surgical system for microsurgical techniques, https://patents.google.com/patent/WO2016030767A1/pt-PTGoogle Scholar

  • [56] Patent number wo 2017064305 a1, Method of manufacturing a medical tool, https://encrypted.google.com/patents/WO2017064305A1/noGoogle Scholar

  • [57] H. Ueda, R. Suzuki, A. Nakazawa, Y. Kurose, M. M. Marinho, N. Shono, et al., Toward autonomous collision avoidance for robotic neurosurgery in deep and narrowspaces in the brain, In: 3rd CIRP Conference on BioManufacturing, Procedia CIRP, 2017, 65, 110-114Google Scholar

  • [58] M. E. Allaix, A. Arezzo, S. Arolfo, M. Caldart, F. Rebecchi, M. Morino, Transanal endoscopic microsurgery for rectal neoplasms. How I do it, Journal of Gastrointestinal Surgery, 2013, 17(3), 586-592CrossrefGoogle Scholar

  • [59] J. M. Ramirez, V. Aguilella, J. A. Gracia, J. Ortego, P. Escudero, J. Valencia, et al., Local full-thickness excision as first line treatment for sessile rectal adenomas: long-term results, Annals of Surgery, 2009, 249(2), 225-228Google Scholar

  • [60] G. Tamburrini, E. Datteri. Ethical reflections on health care robotics, In: R. Capurro, M. Nagenborg (Eds.), Ethics and Robotics, IOS Press, 2009, 35-48Google Scholar

  • [61] A. Nordmann., If and then: A critique of speculative nanoethics, NanoEthics, 2007, 1(1), 31-46Google Scholar

  • [62] N. Sharkey, Staying in the loop: human supervisory control of weapons, In: N. Bhuta, S. Beck, R. Geiß, H.-Y. Liu, C. Kreß (Eds.), Autonomous Weapons Systems: Law, Ethics, Policy, Cambridge University Press, 2016, 23-38Google Scholar

  • [63] G. Tamburrini, On banning autonomous weapons systems: from deontological to wide consequentialist reasons, In: N. Bhuta, S. Beck, R. Geiß, H.-Y. Liu, C. Kreß (Eds.), Autonomous Weapons Systems: Law, Ethics, Policy, Cambridge University Press, 2016, 122-142Google Scholar

  • [64] D. Amoroso, G. Tamburrini, The ethical and legal case against autonomy in weapons systems, Global Jurist, 2017, 18Google Scholar

  • [65] Ethics and autonomous weapon systems: An ethical basis for human control? International Committee of the Red Cross (ICRC), April 2018Google Scholar

  • [66] S. Krishnan, A. Garg, R. Liaw, I. Miller, F. T. Pokorny, K. Goldberg, HIRL: Hierarchical in-verse reinforcement learning for long-horizon tasks with delayed rewards, arXiv preprint, arXiv:1604.06508, 2016Google Scholar

  • [67] A. Mavroforou, E. Michalodimitrakis, C. Hatzitheofilou, A. Giannoukas, Legal and ethical issues in robotic surgery, International Angiology, 2010, 29(1), 75-79.Google Scholar

About the article

Received: 2018-04-27

Accepted: 2018-10-12

Published Online: 2019-01-01

Published in Print: 2019-01-01

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 10, Issue 1, Pages 30–43, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2019-0002.

Export Citation

© by Fanny Ficuciello, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in