Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor


Covered by SCOPUS


CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2017: 99.90

Open Access
Online
ISSN
2081-4836
See all formats and pricing
More options …

Robot use cases for real needs: A large-scale ethnographic case study

Leon Bodenhagen
  • Corresponding author
  • SDU Robotics, Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kerstin Fischer / Trine S. Winther / Rosalyn M. Langedijk / Mette M. Skjøth
  • Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark; Danish Centre for Health Economics, Department of Public Health, University of Southern Denmark, Odense, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-16 | DOI: https://doi.org/10.1515/pjbr-2019-0014

Abstract

This article discusses the process of developing robot use cases using large-scale ethnographic observation as a starting point. In particular, during 296 hours of ethnographic observation of the workflows at seventeen departments at Odense University Hospital, 607 processes were described and subsequently annotated. The ethnographic method provided rich, contextually situated data that can be searched and categorized for use case development, which is illustrated on an example use case, describing the process and illustrating the type of data elicited, discussing the problems encountered and providing downloadable tools for other researchers interested in similar approaches to use case development.

Keywords: use case development; ethnography; health care; innovation; welfare robots

References

  • [1] G. Lanzieri, The greying of the baby boomers: A century-long view of ageing in european populations, Eurostat: Statistics in focus, Techical Report, 2011Google Scholar

  • [2] I. Kirchberger, et al., Patterns of multimorbidity in the aged population, results from the KORA-age study, PLoS ONE, 2012, 7(1):e30556, DOI:10.1371/journal.pone.0030556CrossrefGoogle Scholar

  • [3] L. D. Riek, Healthcare robotics, Communications of the ACM, 2017, 60(11), 68–78CrossrefWeb of ScienceGoogle Scholar

  • [4] A. O. Andrade, et al., Bridging the gap between robotic technology and health care, Biomedical Signal Processing and Control, 2014, 10, 65–78Google Scholar

  • [5] J. Seibt, “Integrative social robotics”: A new method paradigm to solve the description and the regulation problem?, In: J. Seibt, M. Nørskov, S. Schack Andersen (Eds.), What Social Robots Can and Should Do, IOS Press, Amsterdam, 2016, 104–115Google Scholar

  • [6] T. L. Whitehead, Basic classical ethnographic research methods, Cultural ecology of health and change, 2005, 1Google Scholar

  • [7] J. Seibt, M. Damholdt, C. Vestergaard, Five principles of integrative social robotics, In: M. Coeckelberg, J. Loh, M. Funk, J. Seibt, M. Nørskov (Eds.), Envisioning Robots in Society – Power, Politics, and Public Space, IOS Press, Amsterdam, 2018, 28–42Google Scholar

  • [8] M. Hammersley, P. Atkinson, Ethnography: Principles in Practice, 3rd edition, Routledge, New York, 2007Google Scholar

  • [9] L. Suchman, Human-Machine Reconfigurations: Plans and Situated Actions, 2nd edition, Cambridge University Press, Cambridge, 2007Google Scholar

  • [10] J. Preece, Y. Rogers, H. Sharp, Interaction design: Beyond human-computer interaction, John Wiley and Sons, Chichester, 2015Google Scholar

  • [11] B. Mutlu, J. Forlizzi, Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction, In: International Conference on Human Robot Interaction (HRI’08), 2008, Amsterdam, Netherland, ACM, New York, 2008, 287–294Google Scholar

  • [12] W.-L. Chang, S. Sabanovic, L. Huber, Situated analysis of interactions between cognitively impaired older adults and the therapeutic robot Paro, In: G. Herrmann, M. J. Pearson, A. Lenz, P. Bremner, A. Spiers, U. Leonards (Eds.), International Conference on Social Robotics, Bristol, UK, Springer, Cham, 2013, 371–380Google Scholar

  • [13] J. Forlizzi, How robotic products become social products: an ethnographic study of cleaning in the home, In: Proceedings of the ACM/IEEE International Conference on Human Robot Interaction, Arlington, USA, 2007, ACM, New York, 2007, 129–136Google Scholar

  • [14] J. Sung, H. I. Christensen, R. E. Grinter, Robots in the wild: understanding long-term use, In: The 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, USA, 2009, ACM, New York, 2009, 45–52Google Scholar

  • [15] A. M. Sabelli, T. Kanda, N. Hagita, A conversational robot in an elderly care center: an ethnographic study, In: 6th ACM/IEEE International Conference on Human-Robot Interaction, Lausanne, Switzerland, 2011, ACM, New York, 2011, 37–44Google Scholar

  • [16] M. Maguire, N. Bevan, User requirements analysis: A review of supporting methods, In: J. Hammond, T. Gross, J. Wessons (Eds.), IFIP 17th World Computer Congress, Montreal, Canada, 2002, Springer, Boston, 2002, 133–148Google Scholar

  • [17] W. K. Juel, et al., The SMOOTH Robot: Design for a Novel Modular Welfare Robot, In: ICRA2018 Workshop on Elderly Care Robotics – Technology and Ethics, WELCARO, 2018, https://sites.google.com/site/icra2018welcaro/home

  • [18] J. I. Westbrook, M. Z. Raban, S. R. Walter, H. Douglas, Task errors by emergency physicians are associated with interruptions, multitasking, fatigue and working memory capacity: a prospective, direct observation study, BMJ QUAL SAF, 2018, 27(8), 655–663, DOI:10.1136/bmjqs-2017-007333Google Scholar

  • [19] L. Kendall, S. R. Mishra, A. Pollack, B. Aaronson, W. Pratt, Making background work visible: opportunities to address patient information needs in the hospital, AMIA Annual Symposium proceedings, 2015, 1957–1966Google Scholar

  • [20] M. Weigl, A. Müller, A. Zupanc, J. Glaser, P. Angerer, Hospital doctors’ workflow interruptions and activities: an observation study, BMJ QUAL SAF, 2011, 20(6), 491–497, DOI:10.1136/bmjqs.2010.043281CrossrefGoogle Scholar

  • [21] S. Reeves, A. Kuper, B. D. Hodges, Qualitative research methodologies: ethnography, BMJ, 2008, 337:a1020, DOI: 10.1136/bmj.a1020CrossrefWeb of ScienceGoogle Scholar

  • [22] J. Blomberg, M. Burrell, G. Guest, An ethnographic approach to design, In: J. A. Jacko, A. Sears (Eds.), The Human-Computer Interaction Handbook, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 2003, 964–986Google Scholar

  • [23] J. Spradley, Participant observation, Holt, Reinhart and Winston, New York, 1980Google Scholar

  • [24] N. Hook, Grounded theory, In: P. Lankoski, S. Björk (Eds.), Game Research Methods, ETC Press, Pittsburgh, PA, USA, 2015, 309–320Google Scholar

  • [25] K. Holtzblatt, J. B. Wendell, S. Wood, Rapid Contextual Design: A How-to Guide to Key Techniques for User-Centered Design, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004Google Scholar

  • [26] Z. Guo, X. Xiao, H. Yu, Design and evaluation of a motorized robotic bed mover with omni-directional mobility for patient transportation, IEEE Journal of Biomedical and Health Informatics, 2018, 22(6), 1775–1785, DOI:10.1109/JBHI.2018.2849344CrossrefGoogle Scholar

  • [27] C. Hasse, How robots challenge institutional practices, Learning, Culture and Social Interaction, 2018, DOI: 10.1016/j.lcsi.2018.04.003CrossrefGoogle Scholar

About the article

Received: 2018-08-31

Accepted: 2019-03-29

Published Online: 2019-05-16

Published in Print: 2019-01-01


Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 10, Issue 1, Pages 193–206, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2019-0014.

Export Citation

© 2019 Leon Bodenhagen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in