Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Paladyn, Journal of Behavioral Robotics

Editor-in-Chief: Schöner, Gregor

Covered by SCOPUS

CiteScore 2018: 2.17

SCImago Journal Rank (SJR) 2018: 0.336
Source Normalized Impact per Paper (SNIP) 2018: 1.707

ICV 2017: 99.90

Open Access
See all formats and pricing
More options …

Cultural differences in speed adaptation in human-robot interaction tasks

Fabio Vannucci
  • Corresponding author
  • DIBRIS, Università di Genova, Italy; Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Italy;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessandra Sciutti / Hagen Lehman / Giulio Sandini / Yukie Nagai / Francesco Rea
Published Online: 2019-08-28 | DOI: https://doi.org/10.1515/pjbr-2019-0022


In social interactions, human movement is a rich source of information for all those who take part in the collaboration. In fact, a variety of intuitive messages are communicated through motion and continuously inform the partners about the future unfolding of the actions. A similar exchange of implicit information could support movement coordination in the context of Human-Robot Interaction. In this work, we investigate how implicit signaling in an interaction with a humanoid robot can lead to emergent coordination in the form of automatic speed adaptation. In particular, we assess whether different cultures – specifically Japanese and Italian – have a different impact on motor resonance and synchronization in HRI. Japanese people show a higher general acceptance toward robots when compared with Western cultures. Since acceptance, or better affiliation, is tightly connected to imitation and mimicry, we hypothesize a higher degree of speed imitation for Japanese participants when compared to Italians. In the experimental studies undertaken both in Japan and Italy, we observe that cultural differences do not impact on the natural predisposition of subjects to adapt to the robot.

Keywords: human-robot interaction; cultural differences; mutual adaptation; joint task


  • [1] SoftBank Robotics, NAO [Online], Available: https://www.ald.softbankrobotics.com/en

  • [2] SoftBank Robotics, Pepper [Online], Available: https://www.ald.softbankrobotics.com/en

  • [3] D. Mondou, A. Prigent, A. Revel, A dynamic scenario by remote supervision: a serious game in the museum with a Nao robot, In: Advances in Computer Entertainment Technology (ACE2017), London, UK, 2017, 103–116Google Scholar

  • [4] M. Niemelä, A. Arvola, I. Aaltonen, Monitoring the acceptance of a social service robot in a shopping mall: first results, In: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’17), 2017, 225–226Google Scholar

  • [5] A. Sciutti, M. Mara, V. Tagliasco, G. Sandini, Humanizing human-robot interaction: On the importance of mutual understanding, IEEE Technology and Society Magazine, 2018, 37(1), 22–29CrossrefGoogle Scholar

  • [6] R. Blake, M. Shiffrar, Perception of human motion, Annual Review of Psychology, 2007, 58, 47–73CrossrefGoogle Scholar

  • [7] G. Sandini, A. Sciutti, F. Rea, Movement-based communication for humanoid-human interaction, In: A. Goswami, P. Vadakkepat (Eds.), Humanoid Robotics: A Reference, Springer, Dordrecht, 2018, 2169–2197Google Scholar

  • [8] A. Bisio et al., Motor contagion during human-human and human-robot interaction, PLoS One, 2014, 9(8)Google Scholar

  • [9] H. Lehmann, Y. Nagai, G. Metta, The Question of Cultural Sensitive Gesture Libraries in HRI - An Italian - Japanese Comparison, In: Proceedings of the ICDL-EpiRob 2016 – Workshop on Vision and the Development of Social Cognition, 2016Google Scholar

  • [10] S. Martinez-Conde, S. L. Macknik, D. H. Hubel, The role of fixational eye movements in visual perception, Nature Reviews Neuroscience, 2004, 5, 229–240Google Scholar

  • [11] H. Lehmann, I. Keller, R. Ahmadzadeh, F. Broz, Naturalistic Conversational Gaze Control for Humanoid Robots – A First Step, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017Google Scholar

  • [12] M. Argyle, J. Dean, Eye-Contact, Distance and aflliation, Sociometry, 1965, 28(3), 289–304CrossrefGoogle Scholar

  • [13] A. Bisio, N. Stucchi, M. Jacono, L. Fadiga, T. Pozzo, Automatic versus voluntary motor imitation: Effect of visual context and stimulus velocity, PLoS One, 2010, 5(10), e13506Google Scholar

  • [14] C. Bartneck, T. Nomura, T. Kanda, T. Suzuki, K. Kato, Cultural differences in attitudes towards robots, In: Proceedings of the AISB Symposium on Robot Companions, Hard Problems and Open Challenges in Human-Robot Interaction, Hatfield, 2005, 1–4Google Scholar

  • [15] D. Li, P. P. Rau, Y. Li, A cross-cultural study: Effect of robot appearance and task, International Journal of Social Robotics, 2010, 2(2), 175–186Google Scholar

  • [16] S. Šabanović, C. C. Bennett, H. R. Lee, Towards culturally robust robots: A critical social perspective on robotics and culture, In: Proceedings of HRI Workshop on Culture-Aware Robotics, Bielefeld, 2014Google Scholar

  • [17] F. Kaplan, Who is afraid of the humanoid? Investigating cultural differences in the acceptance of robots, International Journal of Humanoid Robotics, 2004, 1(03), 465–480Google Scholar

  • [18] G. Knoblich, S. Butterfill, N. Sebanz, Psychological research on joint action: theory and data, Psychology of Learning and Motivation, Academic Press, 2011, 54, 59–101Google Scholar

  • [19] G. Rizzolatti, L. Craighero, The mirror-neuron system, Annual Review of Neuroscience, 2004, 27(1), 169–192CrossrefGoogle Scholar

  • [20] L. Craighero, G. Metta, G. Sandini, L. Fadiga, The mirror-neurons system: data and models, Progress in Brain Research, 2007, 164, 39–59Web of ScienceGoogle Scholar

  • [21] Y. Kanakogi, S. Itakura, Developmental correspondence between action prediction and motor ability in early infancy, Nature Communications, 2011, 2, 341Google Scholar

  • [22] T. Falck-Ytter, G. Gredebäck, C. von Hofsten, Infants predict other people’s action goals, Nature Neuroscience, 2006, 9(7), 878–879CrossrefGoogle Scholar

  • [23] M. Bove, A. Tacchino, E. Pelosin, C. Moisello, G. Abbruzzese, M. F. Ghilardi, Spontaneous movement tempo is influenced by observation of rhythmical actions, Brain Research Bulletin, 2009, 80(3), 122–127Web of ScienceCrossrefGoogle Scholar

  • [24] L. Noy, E. Dekel, U. Alon, The mirror game as a paradigm for studying the dynamics of two people improvising motion together, In: Proceedings of the National Academy of Sciences, 2011, 108(52), 20947–20952Google Scholar

  • [25] A. Sciutti, A. Bisio, F. Nori, G. Metta, L. Fadiga, T. Pozzo, G. Sandini, Measuring human-robot interaction through motor resonance, International Journal of Social Robotics, 2012, 4(3), 223–234Google Scholar

  • [26] S. Kashi, S. Levy-Tzedek, Smooth leader or sharp follower? Playing the mirror game with a robot, Restorative Neurology and Neuroscience, 2018, 36(2), 147–159CrossrefGoogle Scholar

  • [27] A. Sciutti, G. Sandini, Interacting with robots to investigate the bases of social interaction,IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(12), 2295–2304Google Scholar

  • [28] L. Amoruso, C. Urgesi, Contextual modulation of motor resonance during the observation of everyday actions, Neuroimage, 2016, 134, 74–84Web of ScienceGoogle Scholar

  • [29] L. Amoruso, A. Finisguerra, C. Urgesi, Tracking the time course of top-down contextual effects on motor responses during action comprehension, Journal of Neuroscience, 2016, 36(46), 11590–11600Web of ScienceGoogle Scholar

  • [30] B. Rauchbauer, J. Majdandžić, A. Hummer, C. Windischberger, C. Lamm, Distinct neural processes are engaged in the modulation of mimicry by social group-membership and emotional expressions, Cortex, 2015, 70, 49–67Web of ScienceGoogle Scholar

  • [31] P. Molenberghs, V. Halász, J. B. Mattingley, E. J. Vanman, R. Cunnington, Seeing is believing: Neural mechanisms of action-perception are biased by team membership, Human Brain Mapping, 2013, 34(9), 2055–2068CrossrefWeb of ScienceGoogle Scholar

  • [32] T. L. Chartrand, J. L. Lakin, The antecedents and consequences of human behavioral mimicry, Annual Review of Psychology, 2013, 64, 285–308CrossrefWeb of ScienceGoogle Scholar

  • [33] M. Baldassarre, S. Feller, Cultural variations in personal space: theory, methods, and evidence, Ethos, 1975, 3(4), 481–503CrossrefGoogle Scholar

  • [34] G. Metta, L. Natale, F. Nori, G. Sandini, The iCub project: An open source platform for research in embodied cognition, In: Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO, 2011, 24–26Google Scholar

  • [35] P. Viviani, T. Flash, Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning, Journal of Experimental Psychology: Human Perception and Performance, 1995, 21(1), 32–53CrossrefGoogle Scholar

  • [36] G. Catavitello, Y. P. Ivanenko, F. Lacquaniti, P. Viviani, Drawing ellipses in water: evidence for dynamic constraints in the relation between velocity and path curvature, Experimental Brain Research, 2016, 234(6), 1649–1657Web of ScienceGoogle Scholar

  • [37] N. Noceti, F. Rea, A. Sciutti, F. Odone, G. Sandini, View-invariant robot adaptation to human action timing, In: Proceedings of SAI Intelligent Systems Conference, Springer, Cham, 2018, 804–821Google Scholar

  • [38] U. Pattacini, F. Nori, L. Natale, G. Metta, G. Sandini, An experimental evaluation of a novel minimum-jerk Cartesian controller for humanoid robots, In: Proceedings of IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS, 2010, 1668–1674Google Scholar

  • [39] T. Chaminade, D. W. Franklin, E. Oztop, G. Cheng, Motor interference between humans and humanoid robots: Effect of biological and artificial motion, In: Proceedings of 2005 4th IEEE International Conference on Development and Learning, 2005, 96101Google Scholar

  • [40] G. Metta, P. Fitzpatrick, L. Natale, YARP – Yet Another Robot Platform, version 2.3.20, International Journal of Advanced Robotic Systems, 2006, 3(1), 8Google Scholar

  • [41] ICubForwardKinematics, 2014, http://wiki.icub.org/wiki/ICubForwardKinematics

  • [42] D. Eizicovits, Y. Edan, I. Tabak, S. Levy-Tzedek, Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement, Restorative Neurology and Neuroscience, 2018, 36(2), 261–274Web of ScienceCrossrefGoogle Scholar

  • [43] A. Cherubini, R. Passama, A. Meline, A. Crosnier, P. Fraisse, Multimodal control for human-robot cooperation, In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2013, 2202–2207Google Scholar

  • [44] B. Nemec, N. Likar, A. Gams, A. Ude, Bimanual human robot cooperation with adaptive stiffness control, In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2016, 607–613Google Scholar

About the article

Received: 2018-12-13

Accepted: 2019-06-25

Published Online: 2019-08-28

Published in Print: 2019-01-01

Citation Information: Paladyn, Journal of Behavioral Robotics, Volume 10, Issue 1, Pages 256–266, ISSN (Online) 2081-4836, DOI: https://doi.org/10.1515/pjbr-2019-0022.

Export Citation

© 2019 Fabio Vannucci et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in