Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 12, Issue 1 (Jan 2010)

Issues

Kinetics of nanocrystalline iron nitriding

Walerian Arabczyk
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacek Zamłynny
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dariusz Moszyński
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-04-08 | DOI: https://doi.org/10.2478/v10026-010-0008-z

Kinetics of nanocrystalline iron nitriding

Nitriding of nanocrystalline iron was studied under the atmosphere of pure ammonia and in the mixtures of ammonia - hydrogen - nitrogen at temperatures between 350°C and 500°C using thermogravimetry and x-ray diffraction. Three stages of nitriding were observed and have been ascribed to the following schematic reactions: (1) α-Fe → γ'-Fe4N, (2) γ'- Fe4N → ε - Fe3N and (3) ε - Fe3N → ε - Fe2N. The products of these reactions appeared in the nitrided nanocrystalline iron not sequentially but co-existed at certain reaction ranges. The dependence of a reaction rate for each nitriding stage on partial pressure of ammonia is linear. Moreover, a minimal ammonia partial pressure is required to initiate the nitriding at each stage.

Keywords: iron nitrides; microporous materials; chemical synthesis; thermogravimetric analysis; X-ray diffraction

  • VDI (1990). VDI - Lexikon Werkstofftechnik. Dusseldorf: VDI-Verlag.Google Scholar

  • Bell, T. (1977). Source Book on Nitriding (pp. 266 - 278). Metals Park: American Society of Metals.Google Scholar

  • Mongis, J., Peyre, J. P., & Tournier, C. (1984). Nitriding of microalloyed steels. Heat Treatment of Metals. 11(3), 71 - 75.Google Scholar

  • (2006). Nanomaterials Handbook. Boca Raton: CRC/Taylor & Francis.Google Scholar

  • Gu, J. F., Bei, D. H., Pan, J. S., Lu, J., & Lu, K. (2002). Improved nitrogen transport in surface nanocrystallized lowcarbon steels during gaseous nitridation. Materials Letters. 55, 340 - 343.Google Scholar

  • Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of ε-Fe3-2 N phase in a nanocrystalline Fe. Scripta Materialia. 50, 647-650.Google Scholar

  • Tong, W. P., Liu, C. Z., Wang, W., Tao, N. R., Wang, Z. B., Zuo, L., & He, J. C. (2007). Gaseous nitriding of iron with a nanostructured surface layer. Scripta Materialia. 57, 533 - 536.Web of ScienceGoogle Scholar

  • Schaaf, P. (2002). Laser nitriding of metals. Prog. Mater. Sci. 47, 1 - 161.CrossrefGoogle Scholar

  • Nishimaki, K., Ohmae, S., Yamamoto, T. A., & Katsura, M. (1999). Formation of iron-nitrides by the reaction of iron nanoparticles with a stream of ammonia. Nanostructured Materials. 12, 527 - 530.CrossrefGoogle Scholar

  • Inia, D. K., Vredenberg, A. M., Habraken, F. H. P. M., & Boerma, D. O. (1999). Nitrogen uptake and rate-limiting step in low-temperature nitriding of iron. Journal of Applied Physics. 86(2), 810 - 816.CrossrefGoogle Scholar

  • Wu, X. L., Zhong, W., Tang, N. J., Jiang, H. Y., Liu, W., & Du, Y. W. (2004). Magnetic properties and thermal stability of nanocrystalline ε-Fe3N prepared by gas reduction-nitriding method. J. Alloy. Comp. 385, 294 - 297. DOI: 10.1016/j.jallcom.2004.04.127.CrossrefGoogle Scholar

  • Jiraskova, Y., Havlicek, S., Schneeweiss, O., Perina, V., & Blawert, C. (2001). Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation. Journal of Magnetism and Magnetic Materials. 234, 477 - 488.Google Scholar

  • Lin, C.-K., Chen, G.-S., Chen, J.-S., Chin, T.-S., & Lee, P.-Y. (2001). Characterization of iron nitride powders formed by mechanical alloying and atmospheric heat treatment techniques. J. Chin. Inst. Eng. 24(6), 755 - 762.Google Scholar

  • Schaaf, P. (1998). Iron nitrides and laser nitriding of steel. Hyperfine Interactions. 111, 113 - 119.Google Scholar

  • Shinno, H., Uehara, M., & Saito, K. (1997). Synthesis of α"-Fe16 N2 iron nitride by means of nitrogen-ion implantation into iron thin films. J. Mater. Sci. 32, 2255 - 2261.CrossrefGoogle Scholar

  • Kunze, J. (1990). Nitrogen and carbon in iron and steel thermodynamics. Berlin: Akademie-Verlag.Google Scholar

  • Lakhtin, J. M., & Kogan, J. D. (1976). Azotirovanie stali. Moskva: Masinostroenie.Google Scholar

  • Lehrer, E. (1930). The equilibrium, iron - hydrogen - ammonia. Z. Electrochem. 36, 383 - 392.Google Scholar

  • Wohlschloegel, M., Welzel, U., & Mittemeijer, E. J. (2007). Unexpected formation of ε iron nitride by gas nitriding of nanocrystalline α-Fe films. Applied Physics Letters. 91, 141901.Web of ScienceGoogle Scholar

  • Arabczyk, W., & Wróbel, R. (2003). Study of the Kinetics of Nitriding of Nanocrystalline Iron using TG and XRD methods. Sol. State Phenom. 94, 185 - 188.Google Scholar

  • Cao, M., Wang, R., Fang, X., Cui, Z., Chang, T., & Yang, H. (2001). Preparing γ'-Fe4N ultrafine powder by twice-nitriding method. Powder Technology. 115, 96-98.Google Scholar

  • Arabczyk, W., & Jakrzewska, M. (1995). The nitriding kinetics of fine-crystalline α-Fe. In: Advanced materials and technologies: 14th International Scientific Conference (pp. 21 - 24). Gliwice: Committee of Metallurgy of the Polish Academy of Science.Google Scholar

  • Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of reduction of the nanocrystalline iron nitrides. Annals of Polish Chemical Society. 3(3), 1065 - 1069.Google Scholar

  • Opalińska, A., Leonelli, C., Łojkowski, W., Pielaszek, R., Grzanka, E., Chudoba, T., Matysiak, H., Wejrzanowski, T., & Kurzydłowski, K. J. (2006). Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction. J. Nanomater. 2006(Article ID 98769), 1 - 8. DOI: 10.1155/JNM/2006/98769.Google Scholar

  • Schloegl, R. (1991). In: J. R. Jennings, Catalytic Ammonia Synthesis (p. 19). New York: Plenum Press.Google Scholar

  • Du Marchie van Voorthuysen, E. H., Chechenin, N. C., & Boerma, D. O. (2002). Low-Temperature Extention of the Lehrer Diagram and the Iron-Nitrogen Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33A, 2593 - 2598.Google Scholar

  • Arabczyk, W., & Zamłynny, J. (1999). Study of the ammonia decomposition over iron catalysts. Catal. Lett. 60(3), 167 - 171.Web of ScienceCrossrefGoogle Scholar

  • Love, K. S., & Emmett, P. H. (1941). The Catalytic Decomposition of Ammonia over Iron Synthetic Ammonia Catalysts. J. Amer. Chem. Soc. 63, 3297 - 3308.Google Scholar

  • Logan, S. R., Moss, R. L., & Kemball, C. (1958). The Catalytic Decomposition of Ammonia on Evaporated Iron Films. Trans. Farad. Soc. 54, 922 - 930.Google Scholar

  • Pulkkinen, R. E. E. (1982). Kinetics of nitridation of α-irons containing chromium, molybdenum, and silicon in ammonia - hydrogen mixtures. Metal Science. 16, 37 - 40.Google Scholar

  • Rosendaal, H. C. F., Colijn, P. F., & Scheaf, P. J. (1983). The developement of nitrogen concentration profiles of nitriding iron. Metal. Trans. 14, 395 - 399.Google Scholar

  • Keddam, M., Djeghlal, M. E., & Barrallier, L. (2005). A simple diffusion model for the growth kinetics of γ' iron nitride on the pure iron substrate. Appl. Surf. Sci. 242, 369 - 374. DOI: 10.1016/j.apcusc.2004.09.003.CrossrefWeb of ScienceGoogle Scholar

  • Keddam, M., Djeghlal, M. E., & Barrallier, L. (2004). A diffusion model for simulation of bilayer growth (ε/γ') of nitrided pure iron. Mater. Sci. Eng. A. 378, 475-478. DOI: 10.1016/j.msea.2003.11.066.CrossrefGoogle Scholar

  • Grabke, H. J. (1968). Reaction of ammonia, nitrogen, and hydrogen on the surface of iron. II. Kinetics of iron nitridation with nitrogen and nitrogen desorption. Ber. Bunsenges. Phys. Chem. 4, 533 - 543.Google Scholar

  • Grabke, H. J. (1973). Kinetics of nitriding iron as a function of the oxygen activity of the gas. Archiv. Eisenhut. 44, 603 - 608.Google Scholar

About the article


Published Online: 2010-04-08

Published in Print: 2010-01-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/v10026-010-0008-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katarzyna Skulmowska, Rafał Pelka, and Walerian Arabczyk
The Journal of Physical Chemistry C, 2017, Volume 121, Number 27, Page 14712
[2]
Samira Fatma Kurtoğlu and Alper Uzun
Scientific Reports, 2016, Volume 6, Number 1
[3]
W. Arabczyk, E. Ekiert, and R. Pelka
The Journal of Physical Chemistry C, 2016, Volume 120, Number 32, Page 17989
[4]
Dariusz Moszyński, Karolina Kiełbasa, and Walerian Arabczyk
Materials Chemistry and Physics, 2013, Volume 141, Number 2-3, Page 674
[5]
Dariusz Moszyński
The Journal of Physical Chemistry C, 2014, Volume 118, Number 28, Page 15440
[6]
V. Rocher, J. Manerova, M. Kinnear, D. J. Evans, and M. G. Francesconi
Dalton Trans., 2014, Volume 43, Number 7, Page 2948
[7]
Dariusz Moszyński, Izabela Moszyńska, and Walerian Arabczyk
Applied Physics Letters, 2013, Volume 103, Number 25, Page 253108

Comments (0)

Please log in or register to comment.
Log in