Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 13, Issue 3

Issues

Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts

Karolina Valkaj
  • Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ozren Wittine
  • Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karmen Margeta
  • Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teresa Granato / Andrea Katović
  • Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanka Zrnčević
Published Online: 2011-10-05 | DOI: https://doi.org/10.2478/v10026-011-0033-6

Phenol oxidation with hydrogen peroxide using Cu/ZSM5 and Cu/Y5 catalysts

In this work, catalytic activity and stability of Cu/Y5 and Cu/ZSM5 zeolites in phenol oxidation with hydrogen peroxide were examined. The catalyst samples were prepared by the ion exchange method of the protonic form of commercial zeolites. The catalysts were characterized by the powder X-ray diffraction (XRD), AAS, while the adsorption techniques were used to measure the specific surface area.

The thermal programmed desorption of NH3 (NH3-TPD) was used for measuring the total number of acid sites formed on the surface of zeolites.

Catalytic performance of the prepared samples was monitored in terms of phenol, hydrogen peroxide and total organic carbon (TOC) conversion, by-product distribution and a degree of copper leached into the aqueous solution.

It was found that the activity of Cu/Y5 catalyst was generally higher than that of Cu/ZSM5 and that unlike Cu/ZSM5, Cu/Y5 catalyzed phenol oxidation more completely.

Keywords: waste water treatment; phenol oxidation; hydrogen peroxide; catalysts; Cu/ZSM5; Cu/Y5

  • Busca, G., Berardinelli, S., Resini, C. & Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mat., 160, 265-288, DOI: org/10.1016/j.jhazmat.2008.03.045.Google Scholar

  • Al-Hayek, N. & Doré, M, (1990). Oxidation of phenols in water by hydrogen peroxide on alumine supported iron. Water Res., 24, 973-982, DOI:10.1016/0043-1354(90)90119-Q.CrossrefGoogle Scholar

  • Cuzzola, A., Bernini, M. & Salvadori, P. (2002). A preliminary study on iron species as heterogeneous catalysts fort he degradation of linear alkylbenzene sulphonic acids by H2O2. Appl. Catal. B., 36, 231-237. doi:10.1016/S0926-3373(01)00311-3CrossrefGoogle Scholar

  • Parvulescu, V. & Su, B.L. (2001). Iron, cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons. Catal. Today, 69, 315-322. doi:10.1016/S0920-5861(01)00384-4.CrossrefGoogle Scholar

  • Hu, X., Lam, F., Cheung, L., Chan, K., Zhao, X. & Lu, G. (2001). Copper/MCM-41 as catalyst for photochemically enhanced oxidation of phenol by hydrogen peroxide. Catal. Today, 68, 129-133. doi:10.1016/S0920-5861(01)00273-5.CrossrefGoogle Scholar

  • Decyk, P., Trejda, M. & Ziolek, M. (2005). Iron containing mesoporous solids: preparation, characterization, and surface properties. C. R. Chimie, 8, 635-654. DOI:10.1016/j.crci.2004.11.022.CrossrefGoogle Scholar

  • Kumar, D., Varma, S., Dey, G.K. & Gupta, N.M. (2004). Hydrothermal synthesis, characterization and catalytic properties of urano-silicate mesoporous molecular sieves. Micropor. Mesopor. Mat., 73, 181-189. DOI:10.1016/j.micromeso.2004.05.010.CrossrefGoogle Scholar

  • Fajerwerg, K., Foussard, J., Perrard, A. & Debellefontaine, H. (1997). Wet oxidation of phenol by hydrogen peroxide: The key role of pH on the catalytic behaviour of Fe-ZSM-5. Water Sci. Technol., 35, 103-110, DOI:10.1016/S0273-1223(97)00015-2.CrossrefGoogle Scholar

  • Choi, J.S., Yoon, S.S., Jang, S.H. & Ahn, W.S. (2006) Phenol hydroxylation using Fe-MCM-41 catalysts. Catal. Today, 111, 280-287, DOI:10.1016/j.cattod.2005.10.037.CrossrefGoogle Scholar

  • Valange, S., Gabelica, Z., Abdellaoui, M., Clacens, J.M. & Barrault, J. (1999). Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol. Micropor. Mesopor. Mat., 30, 177-185.Google Scholar

  • Martinez, F., Melero, J. A. & Gordo, L. (2001). Wet peroxide oxidation of phenolic solutions over different iron containing zeolitic material. Ind. Eng. Chem. Res., 40, 3921-3928.Google Scholar

  • Zrnčević, S. & Gomzi, Z. (2005). CWPO: An environmental solution for pollutant removal from wastewater. Ind. Eng. Chem. Res. 44, 6110-6114.CrossrefGoogle Scholar

  • Calleja, G., Melero, J.A., Martinez, F. & Molina, R. (2005). Activity and resistance of iron-containing amorphous zeolitic and mesostructured materials for wet peroxide oxidation of phenol Water Res., 39, 1741-1750. doi:10.1016/j.watres.2005.02.013.CrossrefGoogle Scholar

  • Maduna Valkaj, K., Katović, A. & Zrnčević, S. (2007). Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. J. Hazard. Mat., 144, 663-667, DOI:10.1016/j.jhazamat.2007.01.099.CrossrefGoogle Scholar

  • Centi, G., Perathoner, S., Torre, T. & Verduna, M.G. (2000). Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catal. Today, 55, 61-69. DOI: 10.1016/S0920-5861(99)00226-6CrossrefGoogle Scholar

  • Maduna, V., K., Katović, A., Tomašić, V. & Zrnčević, S. (2008). Characterization and activity of the Cu/ZSM5 catalysts for the oxidation of phenol with hydrogen peroxide. Chem. Eng. Tech., 31, 1-7.Google Scholar

  • Guélou, E., Barrault, J., Fournier, J. & Tatibouët, J.M. (2003). Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Appl. Catal. B, 44, 1-8, DOI:10.1016/S0926-3373(03)00003-1.CrossrefGoogle Scholar

  • Guo, J. & Al-Dahhan, M. (2003). Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind. Eng. Chem. Res., 42, 2450-2460.Google Scholar

  • Catrinescu, C., Teodosiu, C., Macoveanu, M., Miehe-Brendlé, J. & Le Dred, R. (2003). Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res., 37, 1154-1160. DOI: 10.1016/S0043-1354(02)00449-9.CrossrefGoogle Scholar

  • Barrault, J., Abdellaoui, M., Bouchoule, C., Majeste, A., Tatibouet, J.M., Louloudi, A., Papayannakos, N. & Gangas, N.H. (2000) Catalytic wet peroxide oxydation over mixed (Al-Fe) pillared clays. Appl. Catal. B: Environ., 27, 225-230. DOI: 10.1016/S0926-3373(00)00170-3.CrossrefGoogle Scholar

  • Guelou, E., Barrault, J., Fournier, J. & Tatibouet, J. (2003). Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron, Appl. Catal. B, 44, 1-8. DOI:10.1016/S0926-3373(03)00003-1.CrossrefGoogle Scholar

  • Rey, A., Faraldos, M., Casas, J.A., Zazo, J.A., Bahamonde, A. & Rodriguez, J.J. (2009). Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface. Appl. Catal. B, 86, 69-77, DOI.org/10.1016/j.apcatb.2008.07.023.CrossrefGoogle Scholar

  • Zazo, J.A., Casas, J.A., Mohedano, A.F. & Rodriguez, J.J. (2006). Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B, 65, 261-268, DOI:10.1016/j.apcatb.2006.02.008.CrossrefGoogle Scholar

  • Liou, R.M., Chen, S.H. Hung, M.Y. Hsu C.S. & Lai, J.Y. (2005). Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere, 59, 117-125, DOI:10.1016/j.chemosphere.2004.09.080.CrossrefGoogle Scholar

  • Liou, R.M., Chen, S.H., Hung M.Y. & Hsu, C.S. (2004). Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe3+-resin/H2O2. Chemosphere, 55, 1271-1280, doi:10.1016/j.chemosphere.2003.12.015.CrossrefGoogle Scholar

  • Sabhi, S. & Kiwi, J. (2001). Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res., 35, 1994-2002, DOI :10.1016/S0043-1354(00)00460-7.CrossrefGoogle Scholar

  • Castro, I.U., Stüber, F., Fabregat, A., Font, J., Fortuny, A. & Bengoa, C. (2009). Supported Cu(II)polymer catalysts for aqueous phenol oxidation. J. Hazard. Mater., 163, 809-815, DOI:10.1016/j.jhazamat.2008.07.054.Web of ScienceCrossrefGoogle Scholar

  • Melero, J.A., Calleja, G., Martinez, F., Molina, R. & Pariente, M.I. (2007). Nanocomposite Fe2O3/SBA-15: An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chem. Eng. J., 131, 245-256, DOI:10.1016/j.cej.2006.12.007.CrossrefGoogle Scholar

  • Arena, F., Giovenco, R., Torre, R., Venuto, A. & Parmaliana, A. (2003). Activity and resistance to leaching of Cu-based catalyst in the wet oxidation of phenol. Appl. Catal. B, 45, 51-62, DOI:10.1016/S0926-3373(03)00163-2.CrossrefGoogle Scholar

  • Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionic, 131, 175-188. DOI:10.1016/S0167-2738(00)00632-9.CrossrefGoogle Scholar

  • Urquieta-González, E.A., Martins, L., Peguin, R.P.S. & Batista, M.S. (2002). Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure. Mat. Res., 5, 321-327, DOI: 10.1590/S1516-14392002000300017.CrossrefGoogle Scholar

  • Dubey, A., Rives, V. & Kannan, S. (2002). Catalytic hydroxilation of phenol over ternary hydrotalacites containing Cu, Ni and Al. J. Mol. Catal. A-Chem., 181, 151-160, DOI: 10.1016/S1381-1169(01)00360-0.CrossrefGoogle Scholar

  • Čapek, L., Dedeček, J., Wichterlová, B., Cider, L., Jobson, E. & Tokarová, V. (2005). Cu-zeolite highly active in reduction of NO with decane. Effect of zeolite structural parameters on the catalyst performance. Appl. Catal. B, 60, 147-153, DOI:10.1016/j.apcatb.2005.02.026.CrossrefGoogle Scholar

  • Atoguchi, T., Konougi, T., Yamamoto, T. & Yao, S. (2004). Phenol oxidation into catehol and hydroquinone over H-MFI, H-MOR, H-USY and H-BEA in the presence of ketone. J. Mol. Catal. A., 220, 183-187, DOI:10.1016/j.molcata.2003.10.026.CrossrefGoogle Scholar

  • Bahranowski, K., Dula, R., Gasior, M., Labanowska, M., Michalik, A., Vartikian, L.A. & Serwicka, E.M. (2001). Oxidation of aromatic-hydrocarbons with hydrogen-peroxide over Zn, Cu, Al-layered double hydroxides. Appl. Clay Sci., 18, 93-101, DOI:10.1016/S0169-1317(00)00033-8.CrossrefGoogle Scholar

  • Fajerwerg, K. & Debellefontaine, H. (1996). Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst. Appl. Catal. B., 10, L229-L235. doi:10.1016/S0926-3373(96)00041-0.CrossrefGoogle Scholar

  • Rivas, F.J., Kolaczkowski, S.T., Beltran, F.J. & Mc Lurgh, D.B. (1999). Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts. J. Chem. Technol. Biotechnol., 74, 390-398.Google Scholar

  • Santos, A., Yustos, P., Quintanilla, A., Rodriguez, S. & Garcia-Ochoa, F. (2002). Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B, 39, 97-113, DOI:10.1016/S0926-3373(02)00087-5.CrossrefGoogle Scholar

  • Pintar, A. & Levec, J. (1994). Catalytic liquid-phase oxidation of phenol aqueous solutions. A Kinetic investigation. Ind. Eng. Chem. Res., 33, 3070-3077.Google Scholar

  • Alejandre, A., Medina, F., Fortuny, A., Salagre, P. & Sueiras, J.E. (1998). Characterisation of copper catalysts and activity for the oxidation of phenol aqueous solutions. Appl. Catal. B, 16, 53-67, DOI :10.1016/S0926-3373(97)00062-3.CrossrefGoogle Scholar

  • Perathoner, S. & Centi, G. (2005). Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams, Top. Catal., 33, 207-224. DOI: 10.1007/s11244-005-2529-x.CrossrefGoogle Scholar

  • Huang, C.P. & Huang, Y.H. (2000). Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Appl. Catal. A, 346, 140-148, DOI:10.1016/j.apcata.2008.05.017.CrossrefWeb of ScienceGoogle Scholar

  • Santos, A., Yustos, P., Quintanilla, A., Ruiz, G. & Garcia-Ochoa, F. (2005). Study of the copper leaching in the wet oxidation of phenol with Cu-Based catalysts: Cause and effects. Appl. Catal. B, 61, 323-333, DOI:10.1016/j.apcatb.2005.06.006.CrossrefGoogle Scholar

  • Limson, J. & Nyokong, T. (1997). Substituted catechol as complexing agents for determination of bismuth, lead, copper and cadmium by adsorptive stripping voltametry. Analyt. Chim. Acta, 344, 87-95, DOI:10.1016/S0003-2670(96)00585-5.CrossrefGoogle Scholar

  • Sotelo, J.L., Ovejero, G., Martínez, F., Melero, J.A. & Milieni, A. (2004). Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1-xCuxO3 perovskite catalyst. Appl. Catal. B, 47, 281-294, DOI:10.1016/j.apcatb.2003.09.007.Google Scholar

About the article


Published Online: 2011-10-05

Published in Print: 2011-01-01


Citation Information: Polish Journal of Chemical Technology, Volume 13, Issue 3, Pages 28–36, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/v10026-011-0033-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Želimir Jelčić, Karolina Maduna, and Stanka Zrnčević
Industrial & Engineering Chemistry Research, 2017
[2]
Lovjeet Singh, Pawan Rekha, and Shri Chand
Separation and Purification Technology, 2016, Volume 170, Page 321
[3]
Assadawoot Srikhaow, S. Meejoo Smith, Kanchana Uraisin, Komkrit Suttiponparnit, Chanapa Kongmark, and Chitiphon Chuaicham
RSC Adv., 2016, Volume 6, Number 43, Page 36766
[4]
Is Fatimah
Journal of Advanced Research, 2014, Volume 5, Number 6, Page 663

Comments (0)

Please log in or register to comment.
Log in