Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 13, Issue 4 (Jan 2011)

Issues

Kinetic, Equilibrium and Thermodynamic studies on the removal of Cr(VI) by activated carbon prepared from Cajanus Cajan(L) Milsp seed shell

P. Thamilarasu / G. Kumar
  • Department of Chemistry, Anna university of Technology, Tiruchirappalli (Pattukottai Campus) -614 701, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Tamilarasan
  • Department of Chemistry, Anna university of Technology, Tiruchirappalli (Pattukottai Campus) -614 701, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. Sivakumar / K. Karunakaran
Published Online: 2012-01-02 | DOI: https://doi.org/10.2478/v10026-011-0041-6

Kinetic, Equilibrium and Thermodynamic studies on the removal of Cr(VI) by activated carbon prepared from Cajanus Cajan(L) Milsp seed shell

This paper presents the feasibility of the removal of hexavalent chromium ions from aqueous solutions by using activated carbon prepared from Cajanus Cajan(L) Milsp. It was carbonized and activated by treating it with concentrated sulfuric acid followed by heating for 5 h at 500°C. Batch adsorption experiments were carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage and temperature. The experimental data fitted well to the Freundlich isotherm. The thermodynamic parameters such as ΔH°, ΔS°, and ΔG° were calculated, which indicated that the adsorption was spontaneous and endothermic in nature. The adsorbent used in this study was characterized by FT-IR and SEM before and after the adsorption of metal ions. The results indicate that Cajanus Cajan(L) Milsp can be employed as a low cost alternative and commercial adsorbents in the removal of chromium (VI) from water and waste water.

Keywords: Adsorption; isotherm; activated carbon; chromium and seed shell

  • Bishnoi, N., Bajaj, M., Sharma, N. & Gupta, A. (2004). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresour. Technol. 91, 305-307. DOI:10.1016/S0960-8524(03)00204-9.CrossrefGoogle Scholar

  • Park, D., Yun, S.Y. & Park, J.M. (2005). Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonia sp., Chemosphere 60, 1356-1364. DOI:10.1016/j.chemosphere.2005.02.020CrossrefGoogle Scholar

  • Khezami, L. & Capart, R. (2005). Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies, J. Hazard. Mater. 123(1-3), 223-231. DOI:10.1016/j.jhazmat.2005.04.012.CrossrefGoogle Scholar

  • US EPA, (1995). National Primary Drinking Water Regulations, Ground Water and Drinking water, Consumer factsheet on: Chromium. http://water.epa.gov/drink/contaminants/index.cfm

  • Aksu, Z., Gonen, F. & Demircan, Z. (2002). Biosorption of chromium(VI) ions by Mowital B30H resin immobilized activated sludge in a packed bed; comparison with granular activated carbon, Process Biochem. 38, 175-186. DOI:10.1016/S0032-9592(02)00053-5.CrossrefGoogle Scholar

  • Agarwal, G.S., Bhuptawat, H.K. & Chaudhari, S. (2006). Biosorption of aqueous chromium(VI) by Tamarindus indica seeds, Bioresour. Technol. 97, 949-956. DOI:10.1016/j.biortech.2005.04.030.CrossrefGoogle Scholar

  • Acar, F.N. & Malkoc, E. (2004) The removal of chromium (VI) from aqueous solutions by Fagus orientalis L., Bioresour. Technol. 94 (1), 13-15. DOI:10.1016/j.biortech.2003.10.032.PubMedCrossrefGoogle Scholar

  • Sarin, V. & Pant, K.K. (2006). Removal of chromium from industrial waste by using eucalyptus bark, Bioresour. Technol. 97 (1), 15-20. DOI:10.1016/j.biortech.2005.02.010.CrossrefGoogle Scholar

  • Yasemin, B. & Zeki T. (2003). Removal of heavy metal ions by modified sawdust of walnut, Fresen. Environ. Bull. 12(4), 376-381. http://www.psp-parlar.de/details_artikel.asp?tabelle=FEBArtikel&artikel_id=487&jahr=2003. http://www.psp-parlar.de/details_artikel.asp?tabelle=FEBArtikel&artikel_id=487&jahr=2003

  • Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt (II) and nickel (II) by seaweeds: batch and column studies, Separ. Purif. Technol. 44, 53-59. DOI:10.1016/j.seppur.2004.12.003.CrossrefGoogle Scholar

  • Kadirvelu, K., Thamaraiselvi, K. & Namasivayam, C. (2001). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coir pitch, Separ. Purif. Technol. 24497-505. DOI:10.1016/S1383-5866(01)00149-6.CrossrefGoogle Scholar

  • Ricordel, S., Taha, S., Cisse, I. & Dorange, G. (2001). Heavy metals removal by adsorption onto peanut husks carbon: Characterization, kinetic study and modeling, Separ. Purif. Technol. 24, 389-401. DOI:10.1016/S1383-5866(01)00139-3.CrossrefGoogle Scholar

  • Al-Haj, A.A. & El-Bishtawi, R. (1999). Removal of lead and nickel ions using zaolite tuff, J. Chem. Tech. Biotechnol. 69, 27-34. DOI: 10.1002/(SICI)1097-4660(199705)69:1<27::AIDJCTB682>3.0.CO;2-J.CrossrefGoogle Scholar

  • Mohan, D., Singh, K.P. & Singh, V.K. (2005). Removal of hexavalent chromium from aqueous solution using low cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res. (ACS) 44, 1027-1042. http://pubs.acs.org/DOI:10.1021/ie0400898. http://pubs.acs.org/Crossref

  • Gupta, V.K., Park, K.T., Sharma, S. & Mohan, D. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse fly ash - a sugar industry waste material, Environmentalist 19, 129-136. http://www.springerlink.com/content/lp845812471l2522/fulltext.pdf. http://www.springerlink.com/content/lp845812471l2522/fulltext.pdf

  • Srivastava, S.K., Gupta, V.K. & Mohan, D. (1997). Removal of lead and chromium by activated slag- a blast furnace waste, J. Environ. Eng. (ACSE) 123(5), 461-468. http://dx.doi.org/10.1061/(ASCE)0733-9372(1997)123:5(461).Google Scholar

  • Loukidou, M.X., Zouboulis, A.I., Karapantsios, T.D. & Matis, K.A. (2004). Equilibrium and Kinetic modeling of chromium (VI) biosorption by Aeromonas caviae, Colloid Surfaces A., 242, 93-104. DOI:10.1016/j.colsurfa.2004.03.030CrossrefGoogle Scholar

  • Gilcreas, F.W., Tarars, M.J. & Ingols, R.S. (1965). Standard methods for the examination of water and wastewater 12th edition, American Public Health Association(APHA) Inc, New York, 213-220.Google Scholar

  • Karthikeyan, S., Sivakumar P. & Palanisamy, P.N. (2008). Novel activated carbons from agricultural wastes and their characterization, E-J. of Chemistry, 5, 409-426. http://www.ejournals.in/open/vol5/no2/409-426.asp. http://www.ejournals.in/open/vol5/no2/409-426.asp

  • Mohan, D., Singh, K.P. & Singh, V.K. (2006). Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth, J. Hazard. Mater. 135, 280-295. DOI:10.1016/j.jhazmat.2005.11.075.CrossrefGoogle Scholar

  • Benefield., L.D., Judkins, J.F. & Weand, B.L. (1982). Process chemistry for water and wastewater Treatment, Englewood Ciffs, NJ, 433-435.Google Scholar

  • Tewari, N., Vasudevan, P. & Guha, B.K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis, Biochem. Eng. J. 23,185-192. DOI:10.1016/j.bej.2005.01.011.CrossrefGoogle Scholar

  • Langmuir, I. (1918). Adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361-1403.Google Scholar

  • Freundlich, H. (1906). Adsorption in solutions, Phys. Chem. 57, 385-410.Google Scholar

  • Gupta, V.K., Sharma, S., Yadau, I.S. & Dinesh, M. (1998). Utilisation of bagasses fly ash generated in the sugar industry for the removal of phenol and P-nitrophenol from waste water, J. Chem. technol. Bio-technol. 71, 180-186. DOI: 10.1002/(SICI)1097-4660(199802)71:2<180::AID-JCTB798>3.0.CO;2-I.CrossrefGoogle Scholar

  • Yavuz, O., Altunkaynak, Y. & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research 37, 948-952. DOI:10.1016/S0043-1354(02)00409-8.CrossrefGoogle Scholar

  • Ajmal, M., Rao, R.A.K., Ahmad, R. & Khan, M.A. (2006). Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater, J. Hazard. Mater. 135, 242-248. DOI:10.1016/j.jhazmat.2005.11.054.CrossrefGoogle Scholar

  • Gupta, V.K., Gupta, M. & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mudan alumium industry waste, Water Research, 35, 1125-1134. DOI:10.1016/S0043-1354(00)00389-4.CrossrefGoogle Scholar

  • Ho, Y.S. & Mckay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood, Trans. I Chem E, 76(B), 183-191. DOI:10.1205/095758298529326.CrossrefGoogle Scholar

  • Hamadi, N.K., Chen, D.X., Farid, M.M. & Lu, M.G.Q. (2001). Adsorption kinetics for the removal chromium(VI) from aqueous solution by adsorbents derived from used tyres sawdust, Chem. Eng. J. 84, 95-105. DOI:10.1016/S1385-8947(01)00194-2.CrossrefGoogle Scholar

  • Weber, W. J. & Morris,. J.C. (1963) Kinetics of adsorption on carbon from solution, J. of Sanitary Engineering Division American Society of civil Engineers, 89, 31-60.Google Scholar

  • Sheng, P.X., Ting, Y.P., Chen, J.P. & Hong, L. (2005). Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interf. Sci. 275, 131-141. DOI:10.1016/j.jcis.2004.01.036.CrossrefGoogle Scholar

  • Oliveria, E.A., Montanher, S.F., Andrade, A.D., Nobrega, J.A. & Rollemberg, M.C. (2005). Equilibrium studies for the sorption of chromium and Nickel from aqueous solutions using raw rice bran, Process Biochem. 40, 3485-3490. DOI:10.1016/j.procbio.2005.02.026.CrossrefGoogle Scholar

  • Sharma, Y.C. & Weng, C.H. (2007). Removal of chromium (VI) from water and wastewater by using riverbed sand: Kinetic and equilibrium studies, J. Hazard. Mater. 142, 449-454. DOI:10.1016/j.jhazmat.2006.08.078.Web of ScienceCrossrefGoogle Scholar

  • Bishnoi, N.R., Bajai, M., Sharma, N. & Gupta, A. (2004). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresour. Technol. 91, 305-307. DOI:10.1016/S0960-8524(03)00204-9.CrossrefGoogle Scholar

  • Sharma, Y.C. (2001). Effect of Temperature on interfacial adsorption of Cr(VI) on Wollastonite, J. Colloid Interface Sci. 233 265-270. DOI:10.1006/jcis.2000.7232.CrossrefGoogle Scholar

  • Pino, G.H., Mesquita De, L.M.S., Torem, M.L. & Pinto, G.A.S. (2006). Biosorption of heavy metals by Powder of green coconut shell, Sep. Sci. Technol. 41, 3141-3153. DOI: 10.1080/01496390600851640.CrossrefGoogle Scholar

  • Banarjee, S.S., Joshi, M.V. & Jayaram, R.V. (2004). Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash, Sep. Sci. Technol. 39, 1611-1629. DOI: 10.1081/SS-120030778.CrossrefGoogle Scholar

  • Sharma, Y.C.,Srivastava, V., Weng, C.H. & Upadhyyay, S.N. (2009). Removal of Cr(VI) from wastewater by adsorption on Iron nanoparticles, Can. J. of Chem. Eng. 87, 921-929. DOI: 10.1002/cjce.20230.CrossrefGoogle Scholar

  • Baral, S.S., Das, S.N., Chaudhury, G.R., Swamy, Y.V. & Rath, P. (2008). Adsorption of Cr(VI) using thermally activated weed salvinia cucullata, Chem. Eng. J. 139, 245-255. DOI:10.1016/j.cej.2007.07.090.CrossrefGoogle Scholar

  • Selvaraj, K., Manonmani, S. & Pattabhi, S. (2003). Removal of hexavalent chromium using Distillery sludge, Bioresour. Technol. 89, 207-211. DOI:10.1016/S0960-8524(03)00062-2.CrossrefGoogle Scholar

About the article


Published Online: 2012-01-02

Published in Print: 2011-01-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/v10026-011-0041-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wojciech Sas, Andrzej Głuchowski, Maja Radziemska, Justyna Dzięcioł, and Alojzy Szymański
Materials, 2015, Volume 8, Number 8, Page 4857

Comments (0)

Please log in or register to comment.
Log in