Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 13, Issue 4 (Jan 2011)

Issues

Preparation and properties of porous carbon material containing magnesium oxide

Jacek Przepiórski
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Czyżewski
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Kapica
  • Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel de la Casa-Lillo
  • Instituto de Bioingeniería, Universidad Miguel Hernández, Edificio Vinalopo, Avda. de la Universidad s/n, 03202-Elche, Alicante, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-01-02 | DOI: https://doi.org/10.2478/v10026-011-0047-0

Preparation and properties of porous carbon material containing magnesium oxide

Porous carbons loaded with magnesium oxide were prepared through one-step process. Poly(ethylene terephthalate) and natural magnesite were used as carbon source and MgO precursor, respectively. An impact of a temperature and relative amounts of raw components used for preparations on the textural parameters of resulting hybrid materials is presented and discussed. As found, pore structure parameters tend to decrease along with MgO loading and temperature used during preparation process. Micropore area is the parameter being reduced primarily.

Keywords: porous carbon; MgO; porosity

  • Cambridge Filter Japan, Ltd. (2009). Product information. Received May 16, 2009, from http://www.cambridgefilter.com/english/productsE/tcc-en/tcc-en.htm

  • Liu, Z.-S. (2008). Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Manage., 28, 2329-2335. DOI:10.1016/j.wasman.2007.10.013.CrossrefGoogle Scholar

  • Aroua, M.K., Daud, W.M.A.A., Yin, C.Y. & Adinata, D. (2008). Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep. Purif. Technol., 62, 609-613. DOI:10.1016/j.seppur.2008.03.003.CrossrefWeb of ScienceGoogle Scholar

  • Houshmand, A., Wan Daud, W.M.A., & Shafeeyan, M. S. (2011). Exploring Potential Methods for Anchoring Amine Groups on the Surface of Activated Carbon for CO2 Adsorption. Sep. Purif. Technol., 46, 1098-1112. DOI:10.1080/01496395.2010.546383.Web of ScienceGoogle Scholar

  • Zhang, Z., Ma, X., Wang, D., Song C. & Wang, Y. (2011). Development of silica-gel-supported polyethylenimine sorbents for CO2 capture from flue gas. AIChE J., DOI:10.1002/aic.12771.Web of ScienceGoogle Scholar

  • Przepiórski, J., Yoshida, S. & Oya, A. (1999). Structure of K2CO3-loaded activated carbon fiber and its deodorization ability against H2S gas. Carbon, 37, 1881-1890. DOI:10,1016/S0008-6223(99)00088-3.Google Scholar

  • Henning, K.D. & Schäfer, S. (1993). Impregnated activated carbon for environmental protection, Gas Sep. Purif., 7, 235-240. DOI:10.1016/0950-4214(93)80023-P.CrossrefGoogle Scholar

  • Hedin, N., Chen, L. & Laaksonen, A. (2010). Sorbents for CO2 capture from flue gas—aspects from materials and theoretical chemistry. Nanoscale, 2, 1819-1841. DOI:10.1039/c0nr00042f.PubMedGoogle Scholar

  • Wu, Z., Hao, N., Xiao, G., Liu, L., Webley, P. & Zhao, D. (2011). One-pot generation of mesoporous carbon supported nanocrystalline calcium oxides capable of efficient CO2 capture over a wide range of temperatures. Phys. Chem. Chem. Phys., 13, 2495-2503. DOI:10.1039/c0cp01807d.Web of ScienceGoogle Scholar

  • Przepiórski, J. (2006). Activated carbon filters and their industrial applications in Activated Carbon Surfaces in Environmental Remediation (Interface Science and Technology, Volume 7, ed. T.J. Bandosz, chapter 9, ISBN:0-12-370536-3, pp.421-474). Academic Press.Google Scholar

  • Przepiórski, J., Abe, Y., Yoshida, S. & Oya, A. (1997). Preferential supporting of potassium carbonate around the peripheral region of activated carbon fiber. J. Mater. Sci. Lett., 16, 1312-1314. DOI:10.1023/A:1018599513817.CrossrefGoogle Scholar

  • Yong, Z., Mata. V.G. & Rodrigues, A.E. (2001). Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorption, 7, 41-50. DOI:10.1023/A:1011220900415.CrossrefGoogle Scholar

  • Bhagiyalakshmi, M., Hemalatha, P., Ganesh, M., Peng, M.M. & Jang, H.T. (2011). A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel, 90, 1662-1667. DOI:10.1016/j.fuel.2010.10.050.CrossrefGoogle Scholar

  • She, L., Li, J., Wan, Y., Yao, X., Tu, B. & Zhao, D. (2011). Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. J. Mater. Chem., 21, 795-800. DOI:10.1039/c0jm02226h.CrossrefWeb of ScienceGoogle Scholar

  • Bhagiyalakshmi, M., Lee, J.Y. & Jang, H.T. (20011). Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. Int. J. Greenh. Gas Con., 4, 51-56. DOI:10.1016/j.ijggc.2009.08.001.Web of ScienceCrossrefGoogle Scholar

  • Lee, S.J., Jung, S.Y., Lee, S.C., Jun, H.K., Ryu, C.K. & J.C. Kim. (2009). SO2 removal and regeneration of MgO-based sorbents promoted with titanium oxide. Ind. Eng. Chem. Res., 48, 2691-2696. DOI:10.1021/ie801081u.CrossrefWeb of ScienceGoogle Scholar

  • Hassanzadeh, A. & Abbasian, J. (2010). Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas: 1. Sorbent development, evaluation, and reaction modeling. Fuel, 89, 1287-1297. DOI:10.1016/j.fuel.2009.11.017.CrossrefWeb of ScienceGoogle Scholar

  • Inagaki, M., Kobayashi, S., Koijn, F., Tanaka, N., Morishita, T. & Tryba, B. (2004). Pore structure of carbon coated on ceramic particles. Carbon, 42, 3153-3158. DOI:10.1016/j.carbon.2004.07.029.CrossrefGoogle Scholar

  • Inagaki, M., Kato, M., Morishita, T. Morita, K. (2007). Direct preparation of mesoporous carbon from a coal tar pitch. Carbon, 45, 1121-1124. DOI:10.1016/S1095-6433(98)00008-7.CrossrefGoogle Scholar

  • Przepiórski, J., Karolczyk, J., Takeda, K., Tsumura, T., Toyoda, M. & Morawski, A. M. (2009). Porous carbon obtained by carbonization of PET Mixed with basic magnesium carbonate: Pore structure and pore creation mechanism. Ind. Eng. Chem. Res. 48, 7110-7116. DOI:10.1021/ie801694t.CrossrefWeb of ScienceGoogle Scholar

  • Przepiórski, J., Karolczyk, J., Tsumura, T., Toyoda, M., Inagaki, M. & Morawski, A. W. (2011). Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate). J. Therm. Anal. Calorim. DOI:10.1007/s10973-011-1910-1.Web of ScienceCrossrefGoogle Scholar

About the article


Published Online: 2012-01-02

Published in Print: 2011-01-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/v10026-011-0047-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marina Godino-Ojer, Antonio J. López-Peinado, Rosa M. Martín-Aranda, Jacek Przepiórski, Elena Pérez-Mayoral, and Elena Soriano
ChemCatChem, 2014, Volume 6, Number 12, Page 3440
[2]
Jacek Przepiórski, Adam Czyżewski, Robert Pietrzak, Masahiro Toyoda, and Antoni W. Morawski
Journal of Hazardous Materials, 2013, Volume 263, Page 353
[3]
Jacek Przepiórski, Adam Czyżewski, Masahiro Toyoda, Tomoki Tsumura, Robert Pietrzak, and Antoni W. Morawski
International Journal of Greenhouse Gas Control, 2012, Volume 10, Page 164
[4]
Jacek Przepiórski, Adam Czyżewski, Robert Pietrzak, and Beata Tryba
Journal of Thermal Analysis and Calorimetry, 2013, Volume 111, Number 1, Page 357
[5]
J. Przepiórski, A. Czyżewski, J. Kapica, D. Moszyński, B. Grzmil, B. Tryba, S. Mozia, and A.W. Morawski
Chemical Engineering Journal, 2012, Volume 191, Page 147

Comments (0)

Please log in or register to comment.
Log in