Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
See all formats and pricing
More options …
Volume 15, Issue 2


Modeling of experimental data for the adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Prosopis juliflora

M. Kumar
  • Department of Chemistry, Anna University Chennai, University College of Engineering, Pattukottai, Rajamadam-614 701, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Tamilarasan
  • Corresponding author
  • Department of Chemistry, Anna University Chennai, University College of Engineering, Pattukottai, Rajamadam-614 701, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-10 | DOI: https://doi.org/10.2478/pjct-2013-0021

This paper presents the feasibility for the removal of methyl orange (MO) dye from aqueous solution using an activated carbon prepared from Prosopis juliflora bark. Batch adsorption experiments were carried out as a function of pH, contact time, adsorbate concentration, adsorbent dosage and temperature. The commonly applicable isotherms namely Freundlich and Langmuir equations are used for the prediction of isotherm parameters. A comparison of linear least-square method and a trial-and-error non-linear method are examined in Freundlich and Langmuir (Four forms) isotherms. The nature of adsorption isotherm feasibility was evaluated with dimensionless separation factors (RL). The dynamics of adsorption process was analyzed with Lagergren’s Pseudo-first order and Pseudo-second order kinetic equations. Thermodynamic parameters like the change in enthalpy (ΔHo), change in entropy (ΔSo) and change in Gibbs free energy (ΔGo) were evaluated and ΔGo shows a negative value whereas ΔHo shows the positive value indicating that the adsorption process was spontaneous and endothermic in nature. The functional group characterization of the adsorbent was done using Fourier transform infrared spectroscopy (FTIR). The thermal stability of activated carbon was analyzed using Thermo gravimetric analysis (TGA) and Differential thermal analysis (DTA).

Keywords : activated carbon; adsorption; isotherm; kinetics and methyl orange

  • 1. Mohan, N., Balasubramanian, N. & Basha, C.A. (2007). Electrochemical oxidation of textile wastewater and its reuse. J. Hazardous materials. 147, 644-651. http://dx.doi.org/10.1016/j.jhazmat.2007.01.063.CrossrefGoogle Scholar

  • 2. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997-1026. http://dx.doi.org/10.1016/j.procbio.2004.04.008.CrossrefGoogle Scholar

  • 3. Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A. & Turan, M. (2007). Basic and reactive dye removal using natural and modified zeolites. J. Chem. & Engg. Data. 52, 2436-2441. DOI: 10.1021/je7003726.CrossrefGoogle Scholar

  • 4. Fewson, C.A. (1988). Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance. TrendsBiotechnol. 6 (7), 148-153. http://dx.doi.org/10.1016/0167-7799(88)90084-4.CrossrefGoogle Scholar

  • 5. Li Li, Wenkui Dai, Peng Yu, Jian Zhao & Yinbo Qu. (2009). Decolorisation of synthetic dyes by crude laccase from Rigidoporus lignosus W1. J. Chem. Tech. and Biotechnol. 84 (3), 399-404. DOI: 10.1002/jctb.2053.Google Scholar

  • 6. Poots, V.J.P., McKay, J.J., & Healy, J.J. (1976). The removal of acid dye from effluent using natural adsorbents-I peat. Water Res.10, 1061-1066. http://dx.doi.org/10.1016/0043-1354(76)90036-1.CrossrefGoogle Scholar

  • 7. Ohea, T., Watanabeb, T. & Wakabayashic, T. (2004). Mutagens in surfacewaters: A review. Mutat. Res. 567 (2-3),109-149. http://dx.doi.org/10.1016/j.mrrev.2004.08.003.CrossrefGoogle Scholar

  • 8. McGeorge, L.J., Louis, B., Atherholt, T.B. & McGarrity, G.J. (1985). Mutagenicity analyses of industrial effluents: results and considerations for integration into water pollution control programs, In Short -term bioassays in the analysis of complex environmental mixtures, Vol. IV, Waters, M.D., Sandhu, S.S., Lewtas, J., Claxton, L., Strauss, G. and Nesnow, S. (Eds.), Plenum Press, New York: 247-268.Google Scholar

  • 9. Mathur, N., Krishnatrey, R., Sharma, S., Pathak, S. & Sharma, K.P. (2003). Certain haematological responses in Swiss albino mice following exposure to textile dye wastewater. J. Environ Biol. 24 (2), 161-164. http://www.ncbi.nlm.nih.gov/pubmed/12974457.Google Scholar

  • 10. Gong, R., Ding, Y., Li, M. (2005). Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigm. 64 (3), 187-192. http://dx.doi.org/10.1016/j.dyepig.2004.05.005.CrossrefGoogle Scholar

  • 11. Vijayakumar, G., Tamilarasan, R., Dharmendirakumar, M. (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. andEnviron. Sci. 3 (1): 157-170. http://www.jmaterenvironsci.com/Document/vol3/16-JMES-139-2011-Tamilarasan.pdf.Google Scholar

  • 12. Uddin, Md.T., Rukanuzzaman, Md., Khan, Md. M.R., Islam. Md. A. (2009). Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. J. Environ. Management. 90 (11), 3443-3450. http://dx.doi.org/10.1016/j.jenvman.2009.05.030.Web of ScienceCrossrefGoogle Scholar

  • 13. Suresh Gupta, Babu, B.V. (2009). Modeling, simulation, and experimental validation for continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent. Biores. Technol. 100 (23), 5633-5640. http://dx.doi.org/10.1016/j.biortech.2009.06.025.CrossrefGoogle Scholar

  • 14. Gong, R., Zhang, X., Liu, H., Sun, Y. & Liu, B. (2007). Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel. Biores. Tech. 98 (6), 1319-1323. http://dx.doi.org/10.1016/j.biortech.2006.04.034.CrossrefGoogle Scholar

  • 15. Gupta, V.K., Ali, I. (2007). Adsorbents for Water Treatment: Development of Low-Cost Alternatives to Carbon. In Encyclopedia of Surface and Colloid Sci. Hubbard, A.,Ed.; MarcelDekker, New York. 1, 149-184. DOI: 10.1081/E- -ESCS-120012606.CrossrefGoogle Scholar

  • 16. Dogan, M., Abak, H., Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 164, 172-181. http://dx.doi.org/10.1016/j.jhazmat.2008.07.155.Web of ScienceCrossrefGoogle Scholar

  • 17. Thamilarasu, P., Vijaya Kumar, G., Tamilarasan, R., Sivakumar V., & Karunakaran, K. (2011). Kinetic, Equilibrium and Thermodynamic studies on the removal of Cr(VI) by activated carbon prepared from Cajanus Cajan(L) Milsp seed shell. Polish J. Chem. Tech.13 (4), 1-DOI:10.2478/v10026-011-0041-6.CrossrefGoogle Scholar

  • 18. Vijaya Kumar, G., Tamilarasan, R. & Dharmendra Kumar, M. (2011). Removal of Cd2+ ions from aqueous solution using live and dead Bacillus Subtilis. Chem. Engg. Res. Bul. 15, 18-24. DOI: http://dx.doi.org/10.3329/cerb.v15i1.6618.CrossrefGoogle Scholar

  • 19. Vijayakumar, G., Yoo, C.K., Elango, K.P. & Dharmendra Kumar, M. (2010). Adsorption Characteristics of Rhodamine B from Aqueous Solution onto Baryte. Clean-Soil, Air, Water. 38 (2), 202-209. DOI: 10.1002/clen.200900125.CrossrefGoogle Scholar

  • 20. Pollard, S.J.T., Fowler, G.D., Sollars, C.J. & Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: A Review. Sci. Total Environ. 116, 31-52. http://dx.doi.org/10.1016/0048-9697(92)90363-W.CrossrefGoogle Scholar

  • 21. Lee, C.K. & Low, K.S. (1989). Removal of copper from solution using moss. Environ. Tech. Lett. 10, 395-404. DOI: 10.1080/09593338909384755.CrossrefGoogle Scholar

  • 22. Ponnusami, V., Vikram, S. & Srivastava, S.N. (2008). Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 152, 276-286. http://dx.doi.org/10.1016/j.jhazmat.2007.06.107.CrossrefWeb of ScienceGoogle Scholar

  • 23. Nandi, B.K., Goswami, A., Purkait, M.K. (2009). Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 161, 387-395. http://dx.doi.org/10.1016/j.jhazmat.2008.03.110.CrossrefGoogle Scholar

  • 24. Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelˆster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar. 24 (4), 1-39. http://www.biodiversitylibrary.org/item/48741.Google Scholar

  • 25. Langmuir, I. (1916). The constitution and fundamental properties of Solids and Liquids. PART I. Solids. J. Am. Chem. Soc. 38, 2221-2295. DOI: 10.1021/JA02268A002.CrossrefGoogle Scholar

  • 26. Freundlich, H.M.F. (1906). Adsorption in solutions. J. Phys.Chem. 57, 384-410.Google Scholar

  • 27. Panda, G.C., Das, S.K. & Guha, A.K. (2008). Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater. 164, 374-379. http://dx.doi.org/10.1016/j.jhazmat.2008.08.015.CrossrefWeb of ScienceGoogle Scholar

  • 28. Qiu, M., Qian, C., Xu, J., Wu, J. & Wang, G. (2009). Studies on the adsorption of dyes into clinoptilolite. Desalination. 243, 286-292. http://dx.doi.org/10.1016/j.desal.2008.04.029.CrossrefGoogle Scholar

  • 29. Namasivayam, C. & Sumithra, S. (2005). Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr (III) hydroxide, an industrial solid waste. J. Environ. Manage. 74, 207-215. http://dx.doi.org/10.1016/j.jenvman.2004.08.016.CrossrefGoogle Scholar

  • 30. Subha, R. & Namasivayam, C. (2011). Removal and recovery of pentachlorophenol onto low cost nano porous carbon-kinetics and isotherms. J. Solid Waste Tech. Mgt. 37 (3). 168-178. DOI:10.5276/JSWTM.2011.168.CrossrefGoogle Scholar

  • 31. Asadullah, M., Asaduzzaman, M., Kabir, M.S., Mostofa, M.G. & Miyazawa, T. (2010). Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 174, 437-443. http://dx.doi.org/10.1016/j.jhazmat.2009.09.072.CrossrefWeb of ScienceGoogle Scholar

  • 32. Vijayakumar, G., Ramalingam, P., Kim, M.J., Yoo, C.K. & Dharmendra Kumar, M. (2010). Removal of acid dye (violet 54) and adsorption kinetics model of using musa spp. waste: A low-cost natural sorbent material. Korean J. Chem. Engg. 27 (5), 1469-1475. DOI: 10.1007/s11814-010-0226-3.CrossrefGoogle Scholar

  • 33. Mondal, S. (2008). Methods of Dye Removal from Dye House Effluent-An Overview. Environ. Engg. Sci. 25, 383-396. DOI:10.1089/ees.2007.0049.CrossrefGoogle Scholar

  • 34. Aksakal, O., Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. J. Hazard. Mater. 181, 666-672. http://dx.doi.org/10.1016/j.jhazmat.2010.05.064.CrossrefGoogle Scholar

  • 35. Lorenc Grabowska, E., Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes & Pigments. 74 (1), 34-40. http://dx.doi.org/10.1016/j.dyepig.2006.01.027.CrossrefWeb of ScienceGoogle Scholar

  • 36. Cooper, P.J. (1993). Removing colour from dyehouse waste waters - a critical review of technology available. Societyof Dyers & Colourists 109, 97. DOI: 10.1111/j.1478-4408.1993. tb01536.x.CrossrefGoogle Scholar

  • 37. Varsha Srivastava, Weng, C.H., Singh, V.K. & Sharma, Y.C. Adsorption of Nickel Ions from Aqueous Solutions by Nano Alumina: Kinetic, Mass Transfer, and Equilibrium Studies. J. Chem. Eng. Data 2011, 56, 1414-1422. DOI:10.1021/je101152b.CrossrefGoogle Scholar

  • 38. Hameed, B.H. & Ahmad, A.A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164, 870-875. http://dx.doi.org/10.1016/j.jhazmat.2008.08.084.CrossrefGoogle Scholar

  • 39. Webi, T.W. & Chakravorti, R.K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 20, 228-238. DOI: 10.1002/aic.690200204.CrossrefGoogle Scholar

  • 40. Xiong, L., Yang, Y., Mai, J., Sun, W., Zhang, C., Wei, D., Chen, Q. & Ni, J. (2010). Adsorption behavior of methylene blue onto titanate nanotubes. Chem.Eng. J., 156, 313-320. http://dx.doi.org/10.1016/j.cej.2009.10.023.CrossrefGoogle Scholar

  • 41. Cheung, W.H., Szetob, Y.S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bio Res. Technol. 98, 2897-2904. http://dx.doi.org/10.1016/j.biortech.2006.09.045.CrossrefGoogle Scholar

  • 42. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34 (5), 451-465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5.CrossrefGoogle Scholar

  • 43. Ho, Y.S & McKay, G. (1999). Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Env. Sci. Health Part A-Toxic/Hazardous Substances and EnvironmentalEngineering 34 (5), 1179-1204. DOI:10.1080/10934529909376889.CrossrefGoogle Scholar

  • 44. Longhinotti, E., Pozza, F., Furlan, L., Maria de, M., Sanchez, D., Klug, M., Laranjeira, M.C.M. & Favere, V.T. (1998). Adsorption of anionic dyes on the biopolymer Chitin. J. Braz. Chem. Soc.; 9 (5), 435-440. http://jbcs.sbq.org.br/jbcs/1998/vol9_n5/10.pdf.CrossrefGoogle Scholar

  • 45. Vasanth Kumar, K. & Sivanesan, S. (2005). Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon. J. Hazardous Mater. 123, 288-292. http://dx.doi.org/10.1016/j.jhazmat.2005.03.040.CrossrefGoogle Scholar

  • 46. Lunhong, Ai, Ming, Li. & Long, Li. (2011). Adsorption of Methylene Blue from Aqueous Solution with Activated Carbon/ Cobalt Ferrite/Alginate Composite Beads: Kinetics, Isotherms, and Thermodynamics. J. Chem. Eng. D. 56, 3475-3483. DOI: 10.1021/je200536h.CrossrefGoogle Scholar

About the article

Published Online: 2013-07-10

Published in Print: 2013-07-01

Citation Information: Polish Journal of Chemical Technology, Volume 15, Issue 2, Pages 29–39, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/pjct-2013-0021.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yusef Omidi Khaniabadi, Rouhollah Heydari, Heshmatollah Nourmoradi, Hesam Basiri, and Hassan Basiri
Journal of the Taiwan Institute of Chemical Engineers, 2016, Volume 68, Page 90
Xuebing Xing, Po-Hsiang Chang, Guocheng Lv, Wei-Teh Jiang, Jiin-Shuh Jean, Libing Liao, and Zhaohui Li
Journal of the Taiwan Institute of Chemical Engineers, 2016, Volume 59, Page 237

Comments (0)

Please log in or register to comment.
Log in