Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 15, Issue 2 (Jul 2013)

Issues

Determinants of water consumption in the dairy industry

Janusz Wojdalski
  • Corresponding author
  • Warsaw University of Life Sciences, Department of Production Management and Engineering, ul. Nowoursynowska 166, 02-787 Warszawa, Poland
  • ”Energy and Environment in the Dairy Industry” Scientific and Technical Association, pl. Cieszyński 1, 10-957 Olsztyn
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogdan Dróżdż
  • Warsaw University of Life Sciences, Department of Production Management and Engineering, ul. Nowoursynowska 166, 02-787 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Piechocki
  • University of Warmia and Mazury in Olsztyn, Department of Electrical Engineering, Power Engineering, Electronics and Automation, ul. Michała Oczapowskiego 11, 10-736 Olsztyn, Poland
  • ”Energy and Environment in the Dairy Industry” Scientific and Technical Association, pl. Cieszyński 1, 10-957 Olsztyn
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Gaworski
  • Warsaw University of Life Sciences, Department of Production Management and Engineering, ul. Nowoursynowska 166, 02-787 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zygmunt Zander
  • University of Warmia and Mazury in Olsztyn, Department of Process Engineering and Equipment, ul. Michała Oczapowskiego 7, 10-957 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Marjanowski
  • ”Energy and Environment in the Dairy Industry” Scientific and Technical Association, pl. Cieszyński 1, 10-957 Olsztyn
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-10 | DOI: https://doi.org/10.2478/pjct-2013-0025

This paper analyzes the correlations between selected technical, process and production factors, equipment profiles and water consumption statistics in four types of dairy plants. Dairy plants were surveyed both individually and in groups. Water consumption was most highly correlated (r > 0.868) with equipment profiles. The highest water consumption was observed in dairy plants operating milk powder departments. In those plants, organization and production factors could significantly reduce water consumption levels because in addition to milk powder, those plants also supplied eight other products. The indicators of water consumption per unit of the final product were correlated (at 0.820 > | r | > 0.663) with equipment profiles, the degree of process automation and employment. Variations in water consumption per unit of the final product were best explained in small plants supplying several products. The presented equations can be used to optimize water demand of various types of equipment and to determine the correlations with energy consumption for wastewater treatment. Our results can contribute to the development of water consumption models in dairy plants and the implementation of clean production standards.

Keywords : dairy industry; water consumption; environment

  • 1. Feng, X., Huang, L., Zhang, X. & Liu, Y. (2009). Water system integration in a brewhouse. Energy Conversionand Management, 2, 50, pp. 354-359. DOI: 10.1016/j.enconman. 2008.09.013.CrossrefGoogle Scholar

  • 2. Jin-Kuk, K. & Smith, R. (2008). Methods to minimise water use in food processing (in Klemeš J., Smith R., Kim J-K., 2008. Handbook of water and energy management in food processing. CRC Press - Cambridge Woodhead Publishing LTD, pp. 113-135).Google Scholar

  • 3. Kirby, R.M., Bartram, J. & Carr, R. (2003). Water in food production and processing: quantity and quality concerns. FoodControl, 14, pp. 283-299. DOI 10.1016/S0956-7135(02)00090-7.CrossrefGoogle Scholar

  • 4. Klemeš, J., Smith, R. & Jin-Kuk, K. (2008). Handbook of water and energy management in food processing. CRC Press - Cambridge Woodhead Publishing LTD. Provider: John Wiley & Sons, Ltd.Google Scholar

  • 5. Kowalski, Z. & Krupa-Żuczek, K. (2007). A model of the meat waste management. Polish Journal of Chemical Technology, 9, 4, pp. 91-97. DOI 10.2478/v10026-007-0098-4.CrossrefGoogle Scholar

  • 6. Strzelczyk, M., Steinhoff-Wrześniewska, A., Rajmund, A. (2010). Indicators of water consumption and the quantity of wastewater formed in selected branches of food industry. PolishJournal of Chemical Technology, 12, 4, pp. 6-10. DOI 10.2478/ v10026-010-0040-z.CrossrefGoogle Scholar

  • 7. WS Atkins Int. (1998). Environmental protection in the agro-food industry. Environmental Standards. FAPA, Warszawa, pp. 62-65, 77, 80, 86-87 (in Polish).Google Scholar

  • 8. Central Statistical Office (2012). Environment. 2012. Warszawa, pp. 141, 539 ( in Polish).Google Scholar

  • 9. Casani, S., Rouhany, M. & Knøchel, S. 2005. A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Research, 6, 39, pp. 1134-1146. DOI 10.1016/j.watres.2004.12.021.CrossrefGoogle Scholar

  • 10. Fryer, P.J., Christian, G.K. & Liu, W. (2006). How hygiene happens: physics and chemistry of cleaning. International Journalof Dairy Technology, 2, 59, pp. 1134-1146. DOI 10.1111/j.1471- -0307.2006.00249.x.CrossrefGoogle Scholar

  • 11. Mavrov, V. & Belieres, E. (2000). Reduction of water consumption and wastewater quantities in the food industry by water recycling using membrane processes. Desalination, 131, pp. 75-86. Item Identifier S0011-9164(00)90008-0.Google Scholar

  • 12. Olivier, P., Rodriguez, R. & Udaquiola, S. (2008). Water use optimization in batch process industries. Part 1: design of the water network. Journal of Cleaner Production, 16, pp. 1275-1286. DOI: 10.1016/j.jclepro.2007.06.012.CrossrefGoogle Scholar

  • 13. Perle, M., Kimchile, S. & Shelef, G. (1995). Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Research, 29, 6, pp. 1549-1995. Item Identifier 0043- -1354(94)00248-6.CrossrefGoogle Scholar

  • 14. Rüffer, H. & Rosenwinkel, K.H. (1998). Industrial wastewater treatment. Oficyna Wydawnicza Projprzem-EKO, Bydgoszcz, pp. 164-178 (in Polish-translation from German).Google Scholar

  • 15. Salo, S., Ehavald, H., Raaska, L., Vokk, R. & Wirtanen, G. (2006). Microbial surveys in Estonian dairies. LWT, 39, pp. 460-471. DOI: 10.1016/j.lwt.2005.03.008.CrossrefGoogle Scholar

  • 16. Tomaszewska, M. & Białończyk, L. (2012). The chemical cleaning of ceramic membrane used in UF. Polish Journalof Chemical Technology, 14, 3, pp. 105-109. DOI: 10.2478/ v10026-012-0092-3.CrossrefGoogle Scholar

  • 17. Berlin, J., Sonesson, U. & Tillman A.M. (2007). A life cycle based method to minimise environmental impact of dairy production through product sequencing. Journal of CleanerProduction, 15, pp. 347-356. DOI: 10.1016/j.jclepro.2005.07.019.CrossrefGoogle Scholar

  • 18. Drastig, K., Prochnow, A., Kraatz, S., Klauss, H. & Plöchl, M. (2010). Water footprint analysis for the assessment of milk production in Brandenburg (Germany). Advances inGeosciences, 27, pp. 65-70. DOI: 10.5194/adgeo-27-65-2010.CrossrefGoogle Scholar

  • 19. Flemmer, C. (2012). Environmental input-output analysis of the New Zealand dairy industry. International Journal ofSustainable Development, 15, 4, pp. 313-333. DOI: 10.1504/ IJSD.2012.050030.CrossrefGoogle Scholar

  • 20. Honkasalo, N., Rodhe, H., Dalhammar, C. (2005). Environmental permitting as a driver for eco-efficiency in the dairy industry: A closer look at the IPPC directive. Journalof Cleaner Production, 13, pp. 1049-1060. DOI: 10.1016/j. jclepro.2004.12.016.CrossrefGoogle Scholar

  • 21. Masse, L., Masse, D.I., Topp, E., Séguin, G., Scott, A., Ortega, L.M. & Pariseau, É. (2010). Microbial and Physico- -Chemical Characteristics of Surface Water Sources Used on Dairy Farms in Ontario. Water Quality Research Journal ofCanada, 45 (3), pp. 287-294.Google Scholar

  • 22. Merete, E. (2002). Life cycle assessment (LCA) of industrial milk production. The International Journal of Life CycleAssessment, 7, 2, pp. 115-126. DOI :http://dx.doi.org/10.1065/lca2001.12.069.CrossrefGoogle Scholar

  • 23. Milani, F.X., Nutter, D. & Thoma, G. (2011). Environmental impacts of dairy processing and products: A review. Journal of Dairy Science, 9, 94, pp. 4242-4254. DOI: 10.3168/ jds.2010-3955.CrossrefGoogle Scholar

  • 24. Prasad, P., Pagan, R., Kauter, M. & Price, N. (2004). Eco-efficiency for the Dairy Processing Industry. Environmental Management Centre, The University of Queensland, St. Lucia, 43-48, pp. 57-66.Google Scholar

  • 25. Sonesson, U. & Berlin, J. (2003). Environmental impact of future milk supply chains in Sweden: A scenario study. Journal of Cleaner Production, 11, pp. 253-266. Item Identifier S0959-6526(02)00049-5.Google Scholar

  • 26. Steinhoff-Wrześniewska, A., Rajmund, A., Godzwon, J. (2013). Water consumption in selected branches of food industry. Inżynieria Ekologiczna, 32, pp. 164-171 (in Polish).Google Scholar

  • 27. Svensson, B., Ekelund, K., Ogura, H. & Christiansson, A. (2004). Characterisation of Bacillus cereus isolated from milk silo tanks at eight different dairy plants. International DairyJournal, 1,14, pp. 17-27. DOI: 10.1016/S0958-6946(03)00152-3.CrossrefGoogle Scholar

  • 28. Wojdalski, J. & Dróżdż, B. (2008). Eco-efficiency of dairy processing. Postępy Techniki Przetwórstwa Spożywczego.Wyższa Szkoła Menedżerska, 1, pp. 89-92 (in Polish).Google Scholar

  • 29. Baras, J.K. & Jovanovič, S.T. (2006). Wastewater from dairy plants. Prehrambrena industrija-mleko i mlećni proizvodi, 17 (1-2), pp. 29-38, Identifier RS2007000318 (in Serbian).Google Scholar

  • 30. Baskaran, K., Palmowski, M. & Watson, B.M. (2003). Wastewater reuse and treatment options for the dairy industry. Water Science and Technology: Water Supply, 3 (3), pp. 85-91. http://hdl.handle.net/10536/DRO/DU:30002033.Google Scholar

  • 31. Briao, V.B. & Tavares, C.R., Granhen. (2007). Effluent generation by the dairy industry: preventive attitudes and opportunities. Brazilian Journal of Chemical Engineering, 24, 4, pp. 487-497. http://dx.doi.org/10.1590/S0104-66322007000400003.CrossrefGoogle Scholar

  • 32. Demirel, B., Yenigun, O. & Onay, T.T. (2005). Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 40, pp. 2583-2595. DOI: 10.1016/j.procbio.2004.12.015.CrossrefGoogle Scholar

  • 33. Mulligan, C.N., Safi, B.F., Meunier, J. & Chebib, J. (1993). Anaerobic Treatment of Cheese Dairy Wastewater Using the SNC Bioreactor. Water Poll. Res. J. Canada, 28, 3, pp. 597-619. Record number 19941300805.Google Scholar

  • 34. Talik, B. & Kutera, J. (1997). Wastewater in the dairy industry. Proceedings of the Seminar on “Methods for the treatment and management of food-processing wastewater and animal slurries from farms and animal houses”.Wyd. IMUZ, Falenty, pp. 7-16 (in Polish).Google Scholar

  • 35. Kowalczyk, R. & Karp, K. (2005). Energy consumption at sewage treatment in selected plant of dairy industry. ProblemyInżynierii Rolniczej, 4, pp. 79-88 (in Polish).Google Scholar

  • 36. EPIR (2001). Energy Performance Indicator Report: Fluid Milk Plants, 2001. Prepared for the National Dairy Councilof Canada.Google Scholar

  • 37. Wardrop Engineering Inc. (1997). Guide to Energy Effi- ciency Opportunities in the Dairy Processing Industry. National Dairy Council of Canada, Mississauga, Ontario, 3-5, pp. 28-29.Google Scholar

  • 38. Bosworth, M., Hummelsmose, B., Christiansen, K. 2000. Cleaner Production Assessment in Dairy Processing. COWI Consulting Engineers and Planners AS, Denmark, pp. 17-21.Google Scholar

  • 39. WS Atkins - Polska (2005). Best Available Techniques (BAT) - guidelines for the dairy industry.Warszawa, pp. 23-27 (in Polish).Google Scholar

  • 40. Carawan, R.E., Jones, V.A. & Hansen, A.P. (1979). Water use in a Multiproduct Dairy. Journal of Dairy Science, 62 (8), pp. 1238-1242. DOI: 10.3168/jds.S0022-0302(79)83406-2CrossrefGoogle Scholar

  • 41. Wojdalski, J., Michnikowska-Plucińska, T., Zdun, K. & Malejko, B. (1987). Dairy industry and its water-sewage economics.Gospodarka Wodna,10, pp. 235-236 (in Polish).Google Scholar

  • 42. Dvarionienė, J., Kruopienė, J. & Stankevičienė, J. (2012). Application of cleaner technologies in milk processing industry to improve the environmental efficiency. Clean Technologiesand Environmental Policy. DOI: 10.1007/s10098-012-0518-x.CrossrefGoogle Scholar

  • 43. Vourch, M., Balannec, B., Chaufer, B. & Dorange, G. (2008). Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination, 219, pp. 190-202. DOI: 10.1016/j.desal.2007.05.013.CrossrefGoogle Scholar

  • 44. IFC-WGB. (2007). International Finance Corporation - World Bank Group, 2007. Environmental, Health, and Safety Guidelines for Dairy Processing, April 30, pp. 1-15.Google Scholar

  • 45. Budny, J., Giec, W., Kaczorek, J., Proczek, T. & Pypno, J. (1982). Investigations of water economy in dairy plants. III. Utilization of warm water in a dairy plant. Zesz. Nauk. AR-T w Olsztynie, Technologia Żywności, 17, pp. 43-53 (in Polish).Google Scholar

  • 46. Budny, J., Wojdalski, J., Matyjasek, K., Michnikowska- -Plucińska, T., Hamny, J. & Kaczorek, J. (1984a). Energy and water economics in creameries. Part IV. Variations in the water and energy consumption in a milk powdering mill. Zesz. Nauk. AR-T w Olsztynie, Technologia Żywności, 19, pp. 117-126 (in Polish).Google Scholar

  • 47. Budny, J., Wojdalski, J., Michnikowska-Plucińska, T., Curyło, P., Matyjasek, K. & Kaczorek, J. (1984b). Energy and water economics in a dairy plant. Part VI. Changes in water and energy consumption in a municipal dairy. Zesz. Nauk. AR-T w Olsztynie, Technologia Żywności, 20, pp. 60-78 (in Polish).Google Scholar

  • 48. Steffen Robertson & Kirsten Inc. Consulting Engineers. (1989). Water and Wastewater Management in the Dairy Industry, Water Research Commission (South Africa), WRC Project No 145, TT 38/39, Pretoria (cited in Kubicki et al.78).Google Scholar

  • 49. Wojdalski, J., Budny, J. & Krasowski, E. (1983). Water management in dairy plants. Przemysł Spożywczy,11, pp. 482-486 (in Polish).Google Scholar

  • 50. Wojdalski, J. & Dróżdż, B. (2001). Effect of selected technical and technological factors on water consumption in the milk plants. Annals of Warsaw Agricultural University. Agriculture(Agricultural Engineering), 40, pp. 53-58.Google Scholar

  • 51. Wojdalski, J. & Dróżdż, B. (2002). Effect of various technical and organization-production factors on water consumption in milk production. Annals of Warsaw Agricultural University - SGGW, 42 (Agriculture - Agricultural Engineering), pp. 51-57.Google Scholar

  • 52. Gaworski, M. (2002). Effects of transformation of raw milk management system (model study). Annals of WarsawAgricultural University - SGGW, 42 (Agriculture - Agricultural Engineering), pp. 37-43.Google Scholar

  • 53. Piechocki, J. (1997). Method of the investigation for total energy consumption of milk processing. Acta Academiae Agriculturae ac Technicae Olstenensis, Olsztyn (in Polish).Google Scholar

  • 54. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M. & Ernst, F.O. (2011). Integrating energy efficiency performance in production management - gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19, pp. 667-679. http://dx.doi.org/10.1016/j.jclepro.2010.11.011.CrossrefGoogle Scholar

  • 55. Neryng, A., Wojdalski, J., Budny, J. & Krasowski E. (1990). Energy and water in agri-food industry). WNT, Warszawa, pp. 287-292, 331-333 (in Polish).Google Scholar

  • 56. Wojdalski, J. & Dróżdż, B. (2012). Energy efficiency of food processing plants. Key issues and definitions. InżynieriaPrzetwórstwa Spożywczego, 3, 3, pp. 37-49 (in Polish).Google Scholar

  • 57. Wojdalski, J., Dróżdż, B. & Lubach, M. (2005). Factors that influence on water consumption in fruit and vegetable processing plants). Postępy Techniki Przetwórstwa Spożywczego, Wyższa Szkoła Menedżerska. Warszawa, 1, pp. 39-43 (in Polish).Google Scholar

  • 58. Kaleta, A. & Chojnacka, A. (2009). Consideration on methods of increasing the efficiency of heat exchange in heat exchangers applied in dairy industry. Postępy Techniki PrzetwórstwaSpożywczego,1, pp. 91-97 (in Polish).Google Scholar

  • 59. Marjanowski, J. & Ostrowski J. (2002a).Causes and prevention of corrosion of power-generating machinery and equipment made of chromium-nickel stainless steel, used in the dairy industry. (21st International Technological Conference on ”Problems of Energy and Environment Management in the Dairy Industry). Stowarzyszenie Naukowo-Techniczne,,Energia i środowisko w mleczarstwie” - UWM w Olsztynie. Polanica Zdrój, 4-6 września 2002 r., pp. 20-29 (in Polish).Google Scholar

  • 60. Marjanowski, J. & Ostrowski, J. (2002b). The corrosion of heat exchangers made of chromium-nickel steel which are corrosion resistant and the ways of its prevention. INSTAL, 9, pp. 23-30 (in Polish).Google Scholar

  • 61. Gliński, M. (2007). Modern solutions of dairy cooling systems - exemplary case. Part 1. Technika Chłodnicza i Klimatyzacyjna, 9, pp. 447-452 (in Polish).Google Scholar

  • 62. Friedler, F. & Varbanov, P. (2008). Modelling and optimization tools for water minimization in the food industry (in Klemeš J., Smith R., Kim J-K., 2008). Handbook of water and energy management in food processing. CRC Press - Cambridge Woodhead Publishing LTD, 200-220).Google Scholar

  • 63. Peng, S.F., Farid, M. & Wilks, T. (2001). Application of Water Pinch Analysis to a Dairy Plant. Acta Horticulturae (ISHS), 566, pp. 199-203. Cote INIST: 15963, 35400009707457.0220.Google Scholar

  • 64. Scheltinga, H.M.J. (1972). Measures taken against water pollution in dairies and milk processing industries. Pure andApplied Chemistry, 29 (1/3), pp. 101-111.Google Scholar

  • 65. Okoth, M.W. (1992). Energy and water usage in fluid milk and milk powder plants. Discovery and Innovation, 4 (3), pp. 9-15.Google Scholar

  • 66. Tokos, H. & Novak Pintarič, Z. (2009). Synthesis of batch water network for a brewery plant. Journal of Cleaner Production, 17, pp. 1465-1479. DOI: 10.1016/j.jclepro.2012.12.007.CrossrefGoogle Scholar

  • 67. Ostrowski, J. & Marjanowski, J. (2008). Basic criteria for the selection of water treatment station for steam boilers and generators In the dairy industry, (27th International Technological Conference on ”Problems of Energy and Environment Management in the Dairy Industry. Stowarzyszenie Naukowo- -Techniczne,,Energia i środowisko w mleczarstwie” - UWM w Olsztynie. Pułtusk, 2-5 września 2008 r., pp. 77-90 (in Polish). Google Scholar

  • 68. Ostrowski, J., Marjanowski, J., Zander, Z., Dąbrowski, J. & Sejdak, C. (2006). Selected problems of the whey processing condensate and permeate treatment and utilization (25th International Technological Conference on ”Problems of Energy and Environment Management in the Dairy Industry”). Stowarzyszenie Naukowo-Techniczne,Energia i środowisko w mleczarstwie” - UWM w Olsztynie. Ryn k. Giżycka, 5-7 września 2006 r., pp. 166-172 (in Polish).Google Scholar

  • 69. Zander, Z. & Dajnowiec, F. (2009). Water management in dairy industry. AGRO Przemysł, 3, pp. 50-52 ( in Polish).Google Scholar

  • 70. Zander, Z., Dajnowiec, F. & Zander L. (2010).Water In food industry. Przemysł Spożywczy, 64,11, pp. 27-31 (in Polish).Google Scholar

  • 71. Rausch, K.D. & Powell, G.M. (1997). Methods to Reduce Water Use and Liquid Waste Load. Kansas State University, MF-2071.Google Scholar

  • 72. Brush, A., Masanet, E. & Worrell, E. (2011). Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry. An ENERGY STAR® Guide for Energy and Plant Managers. Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720.Google Scholar

  • 73. Anielak, A. (2008). Dairy industry and its water-sewage economics. Agro Przemysł, 2, pp. 57-59 (in Polish).Google Scholar

  • 74. Ikhu-Omoregbe, D.I. & Masiiwa, H. (2002). A postal survey of effluent generation and disposal in the Zimbabwean dairy industry. Water SA, 28, 2, pp. 179-182.Google Scholar

  • 75. Janczukowicz, W., Zieliński, M. & Dębowski, M. (2008). Biodegradability evaluation of dairy effluents originated in selected sections of dairy production. Bioresource Technology, 99, pp. 4199-4205. DOI: 10.1016/j.biortech.2012.01.072.CrossrefGoogle Scholar

  • 76. Nadais, H., Capela, I., Arroja, L. & Duarte, A. (2005). Treatment of dairy wastewater in UASB reactors inoculated with flocculent biomass. Water SA, 31, 4, pp. 603-607.Google Scholar

  • 77. Özbay, A. & Demirer, G.N. (2007). Cleaner production opportunity assessment for a milk processing facility. Journal ofEnvironmental Management, 84 (4), pp. 484-493. DOI: 10.1016/j. jenvman.2006.06.021.CrossrefGoogle Scholar

  • 78. Kubicki, M., Cavey, A., Eyars, R., Hill, S. & Simpson, A. (1998). Environmental protection in the dairy industry. Wyd. FAPA, Warszawa, pp. 27-28, 44-46 (in Polish).Google Scholar

  • 79. Williams, P.J. & Anderson, P.A. (2006). Operational cost savings in dairy plant water usage. International Journalof Dairy Technology, 59, 2, pp. 147-154. DOI: 10.1111/j.1471- -0307.2006.00256.x.CrossrefGoogle Scholar

  • 80. Maxime, D., Marcotte, M. & Arcand, Y. (2006). Development of eco-efficiency indicators for the Canadian food and beverage industry. Journal of Cleaner Production, 14, pp. 636-648. DOI: 10.1016/j.clepro.2005.07.015.CrossrefGoogle Scholar

  • 81. Wendorff, B. (2007). Wastewater volume - How do we compare? UW Dairy Alert! A Technical Update for Dairy Product Manufacturers, May. Dept. of Food Science, University of Wisconsin - Madison.Google Scholar

  • 82. Perry, C. (2011). Accounting for water use: Terminology and implications for saving water and increasing production. Agricultural Water Management, 98, pp. 1840-1846.CrossrefGoogle Scholar

  • 83. Berlin, J. (2002). Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. International Dairy Journal, 11(12), pp. 939-953. DOI: 10.1016/S0958-6946 (02) 00112-7.CrossrefGoogle Scholar

  • 84. Thomassen, M.A., Dalgaard, R., Heijungs, R. & Boer, I. (2008). Attributional and consequential LCA of milk production. The International Journal of Life Cycle Assessment, 13 (4), pp. 339-349. DOI 10.1007/s11367-008-0007-y.CrossrefGoogle Scholar

About the article

Published Online: 2013-07-10

Published in Print: 2013-07-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/pjct-2013-0025.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pedro Luiz Côrtes, Mauro Torrente, Ailton Pinto Alves Pinto, Mauro Silva Ruiz, António José Guerner Dias, and Rosely Rodrigues
Estudos Avançados, 2015, Volume 29, Number 84, Page 7
[2]
Joanna Piepiórka-Stepuk, Jarosław Diakun, and Marek Jakubowski
Chemical and Process Engineering, 2017, Volume 38, Number 1
[3]
L. H. Andrade, F. D. S. Mendes, J. C. Espindola, and M. C. S. Amaral
Brazilian Journal of Chemical Engineering, 2015, Volume 32, Number 3, Page 735
[4]
Beatriz Carrasquer, Javier Uche, and Amaya Martínez-Gracia
Journal of Cleaner Production, 2017, Volume 143, Page 462
[5]
L.H. Andrade, F.D.S. Mendes, J.C. Espindola, and M.C.S. Amaral
Separation and Purification Technology, 2014, Volume 126, Page 21

Comments (0)

Please log in or register to comment.
Log in