Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
See all formats and pricing
More options …
Volume 15, Issue 2


A modified nanoporous stir bar for simultaneous determination of Cu(II) and Cd(II) ions in natural samples prior to flame atomic absorption spectroscopy

Mohammad Karimi
  • Islamic Azad University, Department of Chemistry, Shahr-e-Rey Branch, P.O. Box 18735-334, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Forouzan Aboufazeli
  • Islamic Azad University, Department of Chemistry, Shahr-e-Rey Branch, P.O. Box 18735-334, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hamid Reza Lotfi Zadeh Zhad
  • Islamic Azad University, Department of Chemistry, Shahr-e-Rey Branch, P.O. Box 18735-334, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Omid Sadeghi
  • Islamic Azad University, Department of Chemistry, Shahr-e-Rey Branch, P.O. Box 18735-334, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ezzatollah Najafi
  • Corresponding author
  • Islamic Azad University, Department of Chemistry, Shahr-e-Rey Branch, P.O. Box 18735-334, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-10 | DOI: https://doi.org/10.2478/pjct-2013-0028

In this work, the application of stir bar sorptive extraction (SBSE), as a fast and conventional method, has been investigated for the simultaneous preconcentration and determination of trace amounts of Cd(II) and Cu(II) ions in natural samples. For this purpose, the surface of stir bar was functionalized by amine functionalized nanoporous silica and characterized by IR spectroscopy, X-ray powder diffraction (XRD), Atomic force microscopy (AFM) and N2 adsorption. In this approach, after the preconcentration of Cd(II) and Cu(II) ions and removing the matrix interferences using modified stir bar, the amounts of these ions were determined in eluent by flame atomic absorption spectroscopy (FAAS). Various parameters on adsorption and elution steps including pH of sample, adsorption kinetic, eluent parameters (type, volume and concentration) and elution time, have been optimized in this study. The limits of detection (LOD) were 1.6 and 13.8 ng mL-1 (recovery of 83.5 and 88.1%) for cadmium and copper ions, respectively. The preconcentration factors were 133 and 137 and the relative standard deviations (RSD) of the method were 5.7 and 4.6% for Cd(II) and Cu(II) ions, respectively. As the key point in this study seems to be stir bar nanoporous structure, the analytical performance of this stir bar was compared to non-porous ones. The accuracy of this novel method has been confirmed using some standard references materials. Finally the potential of this method was investigated by determination of Cd(II) and Cu(II) ions in some real samples with complicated matrixes.

Keywords : stir bar sorptive extraction; nanoporous structure; Cd(II) and Cu(II) determination; FAAS

  • 1. Cai, L., Li, X.K., Song, Y. & Cherian, M.G. (2005). Essentiality, toxicology and chelation therapy of zinc and copper. Curr. Med. Chem., 12, 2753-2763. DOI: 10.2174/092986705774462950.CrossrefGoogle Scholar

  • 2. Noel, L., Leblanc, J.C. & Guerin, T. (2003). Determination of Several Elements in Duplicate Meals from Catering Establishments Using Closed Vessel Microwave Digestion with Inductively Coupled Plasma Mass Spectrometry Detection: Estimation of Daily Dietary Intake. Food Addit. Contam., 20, 44-56. DOI: 10.1080/0265203021000031573.CrossrefGoogle Scholar

  • 3. Satarug, S. & Moore, M.R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ. Health Perspect., 112, 1099-1103. DOI: 10.1289/ehp.6751.CrossrefGoogle Scholar

  • 4. Díaz, S., Martín-González, A. & Carlos Gutiérrez, J. (2006). Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ. Int., 32, 711-717. DOI: 10.1016/j.envint.2006.03.004.CrossrefGoogle Scholar

  • 5. Vesterberg, O. & Wrangskogh, K. (1978). Determination of cadmium in urine by graphite furnace atomic absorption spectroscopy. Clin. Chem., 24, 681-685.Google Scholar

  • 6. Ensafi, A.A., Abbasi, S., Rahimi Mansour, H. & Baltork, I.M. (2001). Differential pulse adsorption stripping voltammetric determination of copper(II) with 2-mercaptobenzimidazol at a hanging mercury-drop electrode. Anal. Sci., 17, 609-612. DOI: 10.2116/analsci.17.609.CrossrefGoogle Scholar

  • 7. Ahlgren, L. & Mattsson, S. (1981). Cadmium in man measured in vivo by X-ray fluorescence analysis. Phys. Med. Biol., 26, 19-26. DOI: 10.1088/0031-9155/26/1/004.CrossrefGoogle Scholar

  • 8. Zougagh, M., Torres, A.G. & Cano Pavon, J.M. (2002). Determination of cadmium in water by ICP-AES with on-line adsorption preconcentration using DPTH-gel and TS-gel micro-columns. Talanta, 56, 753-761. DOI: 10.1016/S0039-9140(01)00605-1.CrossrefGoogle Scholar

  • 9. Culp, J.H., Windham, R.L. & Whealy, R.D. (1971). Atomic absorption spectrometry of copper with selected organic solvents after extraction from aqueous solution with 8-hydroxyquinoline. Anal. Chem., 43, 1321-1324. DOI: 10.1021/ac60304a030.CrossrefGoogle Scholar

  • 10. Ressalan, S. & Iyer, C.S.P. (2005). Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene and its copper (II), nickel (II) and zinc (II) complexes: a novel fluorescence sensor. J. Lumin., 111, 121-129. DOI: 10.1016/j.jlumin.2004.02.011.Google Scholar

  • 11. Doner, G. & Ege, A. (2005). Determination of copper, cadmium and lead in seawater and mineral water by flame atomic absorption spectrometry after coprecipitation with aluminum hydroxide. Anal. Chim. Acta, 547, 14-17. DOI: 10.1021/ac60304a030.CrossrefGoogle Scholar

  • 12. Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E., Najibi, A. & Soylak, M. (2009). Cloud point extraction and flame atomic absorption spectrometric determination of cadmium( II), lead(II), palladium(II) and silver(I) in environmental samples. J. Hazard. Mater., 168, 1022-1027. DOI: 10.1016/j. jhazmat.2009.02.130.CrossrefGoogle Scholar

  • 13. Bai, Y. & Bartkiewicz, B. (2009). Removal of Cadmium from Wastewater Using Ion Exchange Resin Amberjet 1200H Columns. Polish J. Environ. Stud., 18, 1191-1195.Google Scholar

  • 14. Soylak, M., Divrikli, U., Dogan, M. (1997). Column Separation and Enrichment of Trace Amounts of Cu, Ni and Fe on XAD-16 Resin in Industrial Fertilisers after Complexation with 4-(2-Thiazolylazo) Resorcinol, J. Trace Microprob. Tech., 15, 197-204. DOI: 35400006534193.0060.Google Scholar

  • 15. Tuzen, M. & Soylak, M. (2007). Multiwalled carbon nanotubes for speciation of chromium in environmental samples, J. Hazard. Mater., 147,219-225. DOI: 10.1016/j.jhazmat. 2006.12.069.Web of ScienceCrossrefGoogle Scholar

  • 16. Baltussen, E., Sandra, P., David, F. & Cramers, C. (1999). Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcol. Sep., 11, 737-747. DOI: 0.1002/(SICI)1520-667X(1999).Google Scholar

  • 17. Pico, Y., Fernandez, M., Ruiz, M.J. & Font, G. (2007). Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment, J. Biochem. Biophys. Meth., 70, 117-131. DOI: 10.1016/j. jbbm.2006.10.010.CrossrefWeb of ScienceGoogle Scholar

  • 18. Sui, G., Wang, J., Lee, Ch., Lu, W., Lee, S.P., Leyton, J.V., Wu, A.M. & Tseng, H. (2006). Solution-Phase Surface Modification in Intact Poly(dimethylsiloxane) Microfluidic Channels, Anal. Chem., 78, 5543-5551. DOI: 10.1021/ac060605z.CrossrefGoogle Scholar

  • 19. Li, G., Zhao, Z. & Liu, J. (2011). Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater., 192, 277-283. DOI: 10.1016/j.jhazmat.2011.05.015.Web of ScienceCrossrefGoogle Scholar

  • 20. Ebrahimzadeh, H., Tavassoli, N., Sadeghi, O., Amini, M.M. & Jamali, M. (2011). Comparison of novel pyridine- -functionalized mesoporous silicas for Au(III) extraction from natural samples. Microchim. Acta, 172, 479-487. DOI: 10.1007/ s00604-010-0503-1.CrossrefWeb of ScienceGoogle Scholar

  • 21. Mashhadizadeh, M.H., Pesteh, M., Talakesh, M., Sheikhshoaie, I., Ardakani, M.M. & Ali Karimi, M. (2008). Solid phase extraction of copper (II) by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry. Spectrochim. ActaB, 63, 885-888. DOI: 10.1016/j.sab.2008.03.018.CrossrefGoogle Scholar

  • 22. Tuzen, M., Saygi, O. & Soylak, M. (2008). Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes, J. Hazard. Mater., 152: 632-639. DOI:10.1016/j.jhazmat.2007.07.026.Web of ScienceCrossrefGoogle Scholar

  • 23. Duran, A., Tuzen, M. & Soylak, M. (2009). Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent, J. Hazard. Mater., 169, 466-471. DOI:10.1016/j.jhazmat.2009.03.119.CrossrefWeb of ScienceGoogle Scholar

  • 24. Tuzen, M., Saygi, K., Usta, C. & Soylak, M. (2008). Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions, Bioresource Tech., 99, 1563-1570. DOI: 10.1016/j.biortech.2007.04.013.CrossrefGoogle Scholar

  • 25. Soylak, M., Akkaya, Y. & Elci, L. (2008). Flame Atomic Absorption Spectrometric Determination of Cu(II), Co(II), Cd(II), Fe(III) and Mn(II) in Ammonium Salts and Industrial Fertilizers after PrEconcentration/Separation on Diaion HP-20, Intern. J. Environ. Anal. Chem., 82, 197-206. DOI: 10.1080/03067310290007796.CrossrefGoogle Scholar

  • 26. Soylak, M., Divrikli, U., Saracoglu, S. & Elci, L. (2008) Membrane filtration - atomic absorption spectrometry combination for copper, cobalt, cadmium, lead and chromium in environmental samples, Environ. Monit. Assess., 127, 169-176. DOI:10.1007/s10661-006-9271-0.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-07-10

Published in Print: 2013-07-01

Citation Information: Polish Journal of Chemical Technology, Volume 15, Issue 2, Pages 86–93, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/pjct-2013-0028.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Narmin Kanani, Mehrnoosh Bayat, Farzaneh Shemirani, Jahan B. Ghasemi, Zohreh Bahrami, and Alireza Badiei
Research on Chemical Intermediates, 2017

Comments (0)

Please log in or register to comment.
Log in