Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
See all formats and pricing
In This Section
Volume 15, Issue 2 (Jul 2013)


Kinetics and mechanism of meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate

D. Kungumathilagam
  • Department of Chemistry, Sona College of Technology, Salem-636 005, India
/ K. Karunakaran
  • Corresponding author
  • Department of Chemistry, Sona College of Technology, Salem-636 005, India
  • Email:
Published Online: 2013-07-10 | DOI: https://doi.org/10.2478/pjct-2013-0031

Developing catalyst is very significant for biologically important reactions which yield products, used as drugs. Mechanistic study on meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate in aqueous acetic acid medium have been carried out. The reaction follows a fractional order with respect to substrate and catalyst. The order with respect to oxidant was found to be one. Increase in the percentage of acetic acid and increase in the concentration of [H+] decreased the rate. The reaction fails to initiate polymerization, and a radical mechanism is ruled out. Activation and thermodynamic parameters have been computed. A suitable kinetic scheme based on these observations has been proposed. Significant catalytic activity is observed for the reaction system in the presence of TPP.

Keywords : indole; sodium perborate; meso-tetraphenylporphyriniron(III) chloride; oxidation

  • 1. Sundberg, R.J. & Kirk-Othmer. (1995). Indole. Encyclopediaof Chemical Technology, Wiley, NewYork.Google Scholar

  • 2. Goyal, R.N. & Sangal, A. (2005). Oxidation chemistry of indole-2-carboxylic acid mechanism and products formed in neutral aqueous solution. Electrochim Acta, 50, 2135. DOI: doi.org/10.1016/j.electacta.2004.09.021.CrossrefGoogle Scholar

  • 3. Al-Kazwini, A.T., O’Neill, P., Adams, G.E., Cundall, R.B., Lang, G. & Junino, A. (1991). Reactions of indolic radicals produced upon one-electron oxidation of 5,6-dihydroxyindole and its N(1)-methylated analogue. J. Chem. Soc., Perkin Trans. 2, 1941-1945. DOI: 10.1039/P29910001941.CrossrefGoogle Scholar

  • 4. Al-Kazwini, A.T., O’Neill, P., Adams, G.E., Cundall, R. B., Junino, A. & Maignan, J. (1992). Characterisation of the intermediates produced upon one-electron oxidation of 4-, 5-, 6- and 7-hydroxyindoles by the azide radical. J. Chem. Soc.,Perkin Trans. 2, 657-661. DOI: 10.1039/P29920000657.CrossrefGoogle Scholar

  • 5. Krylov, S.N. & Dunford, H.B. (1996). Detailed model of the peroxidase-catalyzed oxidation of indole-3-acetic acid at neutral pH. J. Phys. Chem. 100, 913-920. DOI: 10.1021/ jp9522270.CrossrefGoogle Scholar

  • 6. Lawson, W.B. & Witkop, B. (1961). A simple method for the preparation of oxindoleacetic and Propionic acids from the parent indoles. J. Org. Chem. 26, 263. DOI: 10.1021/jo01060a618.CrossrefGoogle Scholar

  • 7. Finch, N. & Taylor, W.E. (1962). Oxidative transformations of indole alkaloids. I. The preparation of oxindoles from Yohimbine; The structures and partial syntheses of Mitraphylline, Rhyncophylline and Corynoxeine. J. Am. Chem Soc. 84, 3871-3877. DOI: 10.1021/ja00879a016.CrossrefGoogle Scholar

  • 8. Rangappa, K.S., Esterline, D.T., Mythily, C.K., Mahadevappa, D.S. & Ambedkar, S.Y. (1993). Oxidation of indoles by n-chloro-n-sodio-p-toluenesulphonamide in alkaline medium catalysed by osmium(VIII): A kinetic study. Polyhedron. 12, 1719-1724. DOI: doi.org/10.1016/S0277-5387 (00)84603-3.CrossrefGoogle Scholar

  • 9. Meenakshisundaram, S.P. & Sarathi, N. (2007). Kinetics and mechanism of oxidation of indole by HSO5 -. Int. J. Chem. Kinet. 39, 46-51. DOI: 10.1002/kin.20215.Web of ScienceCrossrefGoogle Scholar

  • 10. Karunakaran, C., Ramachandran, V. & Palanisamy, P.N. (1999). Linear free energy relationship in complex reaction: Tungsten (VI) catalyzed perborate oxidation of S-Phenylmercaptoacetic acids. Int. J. Chem. Kinet., 31, 675-681. DOI: 10.1002/ (SICI)1097-4601(1999)31:9<675::AID-KIN8>3.0.CO; 2-H.CrossrefGoogle Scholar

  • 11. Karunakaran, C. & Palanisamy, P.N. (1998). Kinetic evidence for (N, N-dimethylaniline)-oxodiperoxomolybdenum(VI) or tungsten(VI) as oxidizing species in molybdenum(VI) or tungsten(VI) catalyzed hydrogen peroxide (perborate) oxidation of N, N-dimethylaniline. synth. React. Inorg. Met. Org. Chem., 28, 1115-1125. DOI: 10.1080/00945719809349393.CrossrefGoogle Scholar

  • 12. Karunakaran, C. & Muthukumaran, B. (1997). Zirconium (IV) catalysis in perborate oxidation of iodide. React. Kinet. Catal. Lett., 60, 387-394. DOI: 10.1007/BF02475703.CrossrefGoogle Scholar

  • 13. Karunakaran, C. & Muthukumaran, B. (1995). Molybdenum(VI) catalysis of perborate or hydrogen peroxide oxidation of iodide ion. Transition Met. Chem. (London), Vol. 20 (5), 460-462. DOI: 10.1007/BF00141517.CrossrefGoogle Scholar

  • 14. Meunier, B. (1992). Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92 (6), 1411-1456. DOI: 10.1021/cr00014a008.CrossrefGoogle Scholar

  • 15. Larsen, J. & Jorgensen, K.A. (1992). A facile oxidation of secondary amines to imines by iodosobenzene or by a terminal oxidant and manganese or iron porphyrins and manganese salen as the catalysts. J. Chem. Soc. Perkin Trans. 2, 1213-1217. DOI: 10.1039/P29920001213.CrossrefGoogle Scholar

  • 16. Groves, J.T., Nemo, T.E. & Myers, R.S. (1979). Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 101, 1032-1033. DOI: 10.1021/ja00498a040.CrossrefGoogle Scholar

  • 17. Bhuvaneshwari, D.S. & Elango, K.P. (2009). Solvent hydrogen bonding and structural influences on the Cr (VI) oxidation of anilines in aqueous acetic acid medium. J. Indian. Chem. Soc. 86, 242-249.Google Scholar

  • 18. Laidler, K. (1965). Chem. Kinet, Tata-Mcgraw Hill, New Delhi.Google Scholar

  • 19. Ruff, F. & Kucsman, A. (1985). Mechanism of the oxidation of sulphides with sodium periodate J. Chem. Soc. PerkinTrans. 2, 683-687. DOI: 10.1039/P29850000683CrossrefGoogle Scholar

  • 20. Meenakshisundaram, S.P. & Sokalingam, R.M. (2001). Nonlinear Hammett Relationships in the Reaction of Peroxomonosulfate Anion (HOOSO3 -) with meta- and para-Substituted Anilines in Alkaline Medium. Collect. Czech. Chem. Commun. 66, 897-911. DOI: 10.1135 /cccc2001089.CrossrefGoogle Scholar

  • 21. Meenakshisundaram, S.P., Selvaraju, M., Made Gowda, N.M. & Rangappa, K.S. (2005). Effect of substituents on the rate of oxidation of anilines with peroxomonosulfate monoanion (HOOSO−3) in aqueous acetonitrile: A mechanistic study. Int. J. Chem. Kinet. 37, 649-657. DOI: 10.1002/kin.20119.CrossrefGoogle Scholar

  • 22. Zhou, X.T., Ji, H.B. & Yuan, Q.L. (2008). Baeyer-Villiger oxidation of ketones catalyzed by iron(III) meso- tetraphenylporphyrin chloride in the presence of molecular oxygen. J. Porphyr. Phthalocya, 12, 94-100. DOI: 10.1142/S1088424608000121.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-07-10

Published in Print: 2013-07-01

Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/pjct-2013-0031.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

S. Shree Devi, B. Muthukumaran, and P. Krishnamoorthy
Ionics, 2014, Volume 20, Number 12, Page 1783
S. Shree Devi, B. Muthukumaran, and P. Krishnamoorthy
ISRN Physical Chemistry, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in