Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
See all formats and pricing
More options …
Volume 15, Issue 3


The unconventional single stage hydrolysis of potato starch

Lucyna Słomińska
  • Corresponding author
  • Institute of Agricultural and Food Biotechnology, Department of Food Concentrates and Starch Products, ul. Starołęcka 40, 61-361 Poznań, Poland
  • University of Zielona Góra, Faculty of Biological Sciences, ul. Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Zielonka
  • Institute of Agricultural and Food Biotechnology, Department of Food Concentrates and Starch Products, ul. Starołęcka 40, 61-361 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leszek Jarosławski
  • Institute of Agricultural and Food Biotechnology, Department of Food Concentrates and Starch Products, ul. Starołęcka 40, 61-361 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-20 | DOI: https://doi.org/10.2478/pjct-2013-0037


Enzymatic depolymerisation of starch to glucose or maltose is carried out by starch- degrading amylases during a two-stage hydrolysis: liquefaction using bacterial α-amylase followed by saccharification with glucogenic (fungal amylase) or maltogenic (fungal or bacterial) amylases. As a rule, these enzymes are applied separately, following the recommendations concerning their action provided by the enzyme manufacturers. The study presents our attempts to determine the reaction conditions for a simultaneous action of liquefying and saccharifying enzymes on pre-treated potato starch. Hydrolysis was run by Liquozyme Supra, Maltogenase 4000L and San Super 360L enzymes (Novozymes) at different temperatures. During the single-stage method of starch hydrolysate production the most desirable results was obtained for the maltose hydrolysate at 80°C (51.6 DE) and for the glucose hydrolysate at 60°C (96 DE). The analyses indicate that the application of a single-stage hydrolysis of starch to maltose or glucose makes it possible to obtain a degree of starch saccharification comparable with that obtained in the traditional two-stage hydrolysis.

Keywords : carbohydrate; dextrose equivalent; enzymes; hydrolysis

  • 1. Radley, J.A. (1982). Starch production technology. Applied Science Publishers, London. England.Google Scholar

  • 2. Reilly, P.J. (1985). Enzymatic degradation of starch.. In G.M.A. Beynum & J.A. Roels (Eds.), Starch conversion technology, pp. 101-142. New York: Marcel Dekker.Google Scholar

  • 3. Alexander, R.J. & Zobel, H.F. (1994). Developments incarbohydrate chemistry. The American Association of Cereal Chemistry, St. Paul, Minnesota.Google Scholar

  • 4. Guzman-Maldonado, H. & Parades-Lopez, O. (1995).Amylolytic enzymes and products derived from starch: a review. Crit. Rev. Food Sci. Nutr. 35 (5). 373-403. DOI: 10.1080/10408399509527706.CrossrefGoogle Scholar

  • 5. Bryjak, J. (1999). Enzymatic starch hydrolysis to maltodextrin and starch syrups. Biotechnologia. 1, 80-199 (in Polish).Google Scholar

  • 6. Schenck, F.W. (2002). Starch hydrolysates: an overview. Int. Sugar J. 1238 (104) 82-89.Google Scholar

  • 7. Legin, E, Copinet, A. & Duchiron, F. (1998). A single step high temperature hydrolysis of wheat starch. Starch/Stärke 50 (2-3), 84-89. DOI: 10.1002/(SICI)1521-379X(199803)50:2/3<84::AID-STAR84>3.0.CO;2-4.CrossrefGoogle Scholar

  • 8. Sarbatly, R. (2007). The simultaneous enzymatic hydrolysis of tapioca starch for instant formation of glucose. J. AppliedSci.. 7 (15), 2057-2062. DOI: 10.3923/jas.2007.2057.2062.CrossrefGoogle Scholar

  • 9. Wang, P., Singh, V., Xue, H. & Johnston, D.B. (2007). Comparison of raw starch hydrolyzing enzyme with conventional liquefaction and saccharification enzymes in dry-grind corn processing. Cereal Chem. 84 (1), 10-14. DOI: 10.1094/ CCHEM-84-1-0010.Web of ScienceCrossrefGoogle Scholar

  • 10. Whistler, R.L., BeMiller, J.N. & Paschall, E.F. (1984). Starch: Chemistry and Technology. Academic Press, Inc. New York.Google Scholar

  • 11. Rauscher, K. (1956). Untersuchung von Lebensmitteln. Fachbuchverlag, Leipzig, Germany.Google Scholar

  • 12. Zielonka, R., Jarosławski, L. & Słomińska, L. (2010). Elaboration and comparison of methods for efficient determination of starch hydrolysis. Zesz. Probl. Post. Nauk Rol.. 557, 423-433 (in Polish).Google Scholar

  • 13. Liakopoulou-Kyriakides, M., Karakatsanis, A., Stamatoudis, M. & Psomas, S. (2001). Synergistic hydrolysis of crude corn starch by α-amylases and glucoamylases of various origins. Cereal Chem. 78 (5), 603-607. DOI: 10.1094/CCHEM 2001 78 5.603.CrossrefGoogle Scholar

  • 14. Fujii, M. & Kawamura, Y. (1985). Synergistic action of α-amylase and glucoamylase on hydrolysis of starch. Biotechnol. Bioeng. 27 (3), 260-265. DOI: 10.1002/bit.260270308.Web of ScienceCrossrefPubMedGoogle Scholar

  • 15. Fujii, M., Homma, T. & Taniguchi, M. (1988). Synergism of α-amylase and glucoamylase on hydrolysis of starch granules. Biotechnol. Bioeng. 32, 910-915. DOI: 10.1002/bit.260320710.CrossrefGoogle Scholar

  • 16. Arasaratnam, V. & Balasubramanian, K. (1993). Synergistic action of α-amylase and glucoamylase on raw corn. Starch/Stärke. 45 (6), 231-233. DOI: 10.1002/star.19970490505.CrossrefGoogle Scholar

  • 17. Janse, B.J.H. & Pretorius, I.S. (1995). One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomycescerevisiae producing α-amylase, glucoamylase and pullulanase. App. Microbiol. Biotechnol. 42 (6), 878-883. DOI: 10.1007/BF00191185.CrossrefGoogle Scholar

  • 18. Karakatsanis, A., Liakopoulou-Kyrakides, M. & Stamatoudis, M. (1997). Hydrolysis of various starches by synergistic action of α-amylase and glucoamylase in aqueous two phase impeller agitated systems. Starch/Stărke. 49, 194-199. DOI: 10.1002/star.19970490505.CrossrefGoogle Scholar

  • 19. Norman, B.E.L., Vikso-Nielsen, A., Olsen, H.S. & Petersen, S. (2009). U.S. Patent No. 2,009,0142817 Washington, D.C.: US Patent and Trademark Office.Google Scholar

  • 20. Franco, J.M., Murado, M.A., Siso, M.I.G., Miron, J. & Gonzalez, M.P. (1989). A HPLC method for specific determination of α-amylase and glucoamylase in complex enzymatic preparations. Chromatographia. 27, 328-332. DOI: 10.1007/ BF02321279.CrossrefGoogle Scholar

  • 21. Tomasik, P. & Horton, D. (2012). Enzymatic conversion of starch. In D. Horton, Advances in Carbohydrate Chemistryand Biochemistry, pp. 59-436. Oxford: Academic Press. DOI: 10.1016/B978-0-12-396523-3.00001-4. CrossrefGoogle Scholar

About the article

Published Online: 2013-09-20

Published in Print: 2013-09-01

Citation Information: Polish Journal of Chemical Technology, Volume 15, Issue 3, Pages 7–14, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: https://doi.org/10.2478/pjct-2013-0037.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anne Gaquere-Parker, Tamera Taylor, Raihannah Hutson, Ashley Rizzo, Aubrey Folds, Shastina Crittenden, Neelam Zahoor, Bilal Hussein, and Aaron Arruda
Ultrasonics Sonochemistry, 2018, Volume 41, Page 404
Lucyna Słomińska, Roman Zielonka, Leszek Jarosławski, Aldona Krupska, Andrzej Szlaferek, Wojciech Kowalski, Jolanta Tomaszewska-Gras, and Marek Nowicki
Polish Journal of Chemical Technology, 2015, Volume 17, Number 4

Comments (0)

Please log in or register to comment.
Log in