Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
See all formats and pricing
More options …
Volume 16, Issue 3


Interaction of SiO2 Nanoparticles with Seed Prechilling on Germination and Early Seedling Growth of Tall Wheatgrass (Agropyron Elongatum L.)

Reyhane Azimi
  • Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Range Land and Watershed Management, Gorgan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Jankju Borzelabad / Hassan Feizi
  • Corresponding author
  • University of Torbat-e-Heydarieh, Faculty of Agriculture and Natural Resources, Torbat-e-Heydarieh, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amin Azimi
  • Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Gava zang, Zanjan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-03 | DOI: https://doi.org/10.2478/pjct-2014-0045


The effect of six SiO2 nanosized concentrations (0, 5, 20, 40, 60 and 80 mg L-1) and three seed prechilling treatments (control, seed prechilling before nano SiO2 treatments, treatments of seed with nano SiO2 before prechilling) on germination and seedling growth of tall wheatgrass (Agropyron elongatum L.) were studied. Results indicated that application of SiO2 nanoparticles significantly increased seed germination of tall wheatgrass from 58 percent in control group to 86.3 and 85.7 percent in 40 and 60 mg L-1, respectively. Applying SiO2 nanoparticles increased dry weight of shoot, root and seedling of tall wheatgrass. Increasing concentration of nanoparticle from 0 up to 40 mg L-1 increased seedling weight around 49 percent compared to the control, nevertheless decreased under 60 and 80 mg L-1 treatments. In conclusion, seed prechilling in combination with SiO2 nanoparticles largely broke the seed dormancy for A. elongatum.

Keywords: seed treatment; seed prechilling; germination rate; nanoparticle


  • 1. Harris, D. ( 1996). The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of (Sorghum bicolor L.) Moench in semi-arid Botswana. Soil Tillage Research 40, 73-88. DOI:10.1016/S0167-1987(96)80007-9.CrossrefGoogle Scholar

  • 2. Chen, F. & Bradford, K.J. (2000). Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology 124, 1265-1274. DOI :11080302. PMCID:PMC59224.Google Scholar

  • 3. Khot, L.R., Sankaran, S., Mari Maja, J., Ehsani, R. & Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection 35, 64-70. DOI: 10.1016/j.cropro.2012.01.007.Web of ScienceCrossrefGoogle Scholar

  • 4. Guo, Z. (2000). Synthesis of the needle-like silica nanoparticles by biomineral method [J]. Chemical Journal of Chinese Universities 21(6), 847-848.Google Scholar

  • 5. Hu, Y. & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal Plant Nutrition Soil Science 168, 541-549. DOI: 10.1002/ jpln.200420516.CrossrefGoogle Scholar

  • 6. Romero-Aranda, M.R., Jurado, O. & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology 163, 847-855. DOI: 10.1016/j.jplph.2005.05.010.CrossrefGoogle Scholar

  • 7. Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W. & Kaufman, P.B. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science 1, 96-103. DOI: 10.1002/jpln.200420516541 p://dx.doi. org/10.1626/pps.1.96.CrossrefGoogle Scholar

  • 8. Ross, J.J., Murfet, I.C. & Reid, J.J. (1997). Gibberellin mutants. Physiology Plant 100, 550-560. DOI: 10.1111/j.1399-3054.1997.tb03060.x.CrossrefGoogle Scholar

  • 9. Hamayun, M., Sohn, E., Afzal Khan, S., Shinwari, Z., Latif Khan A. & Lee. I. (2010). Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pakistan Journal Botany 42(3), 1713-1722.Google Scholar

  • 10. Lin, B., Diao, S., Li, C., Fang, L., Qiao, S. & Yu, M. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forestry Research 15(2), 138-140. DOI: 10.1007/BF02856749.CrossrefGoogle Scholar

  • 11. Tahir, M. Rahmatullah, A., Aziz, T. & Ashraf, M. (2010) Wheat genotypes differed significantly in their response to silicon nutrition under salinity stress. Journal of Plant Nutrition 33, 1658-1671. DOI: 10.1080/01904167.2010.496889.CrossrefWeb of ScienceGoogle Scholar

  • 12. Lu, C.M., Zhang, C.Y., Wu, J.Q. & Tao, M.X. (2002). Research of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science 21, 168-172.Google Scholar

  • 13. Zheng, L., Hong, F., Lu, S. & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biological Trace Element Research 105, 83-91. DOI: 10.1385/BTER:104:1:083.CrossrefGoogle Scholar

  • 14. Bassiri, M., Wilson, A.M., Crami, B. (1988). Dehydration effects on seedling development of four range species. Journal Range Management. 41(5), 383-386.Google Scholar

  • 15. Asgedom, H. & Becker, M. (2001). Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proc. Deutscher Tropentag, University of Bonn and ATSAF, Magrraf Publishers Press, Weickersheim. 282p.Google Scholar

  • 16. ISTA. (2009). ISTA rules. International Seed Testing Association. Zurich, Switzerland.Google Scholar

  • 17. Feizi, H., Kamali, M., Jafari, L. & Rezvani Moghaddam P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91, 506-511. DOI: 10.1016/j.chemosphere.2012.12.012.CrossrefWeb of ScienceGoogle Scholar

  • 18. Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N. & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146,101-106. DOI: 10.1007/ s12011-011-9222-7.Web of ScienceCrossrefGoogle Scholar

  • 19. Lee, W., Kwak, J. & An, Y. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 86: 491-499. DOI: 10.1016/j.chemosphere.2011.10.013.Web of ScienceCrossrefGoogle Scholar

  • 20. Matthews, S. & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigor differences in seed lots of maize (Zea mays). Seed Sci Technol; 35:200-212.CrossrefWeb of ScienceGoogle Scholar

  • 21. Vashisth, A. & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunfl ower (Helianthus annuus) seeds exposed to static magnetic field. Journal Plant Physiology 167, 149-156. DOI: 10.1016/j.jplph.2009.08.011.Web of ScienceCrossrefGoogle Scholar

  • 22. Hartmann, H.T., Kester, D.E. & Davies, F.T. 1990. Plant propagation: principles and practices. Prentice Hall, Englewood Cliffs, New Jersey. 647p.Google Scholar

  • 23. Chen, K. & Arora, R. (2012). Priming memory invokes seed stress-tolerance. Environment Experimental Botany. In press. DOI: 10.1016/j.envexpbot.2012.03.005.CrossrefGoogle Scholar

  • 24. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z. & Watanabe, F. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10), 3221-7. DOI: 10.1021/nn900887m.Web of ScienceCrossrefGoogle Scholar

  • 25. Zhu, J., Wei, G., Li, J., Qian, Q., Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167,527-533, DOI: 10.1016/j.plantsci.2004.04.020.CrossrefGoogle Scholar

  • 26. Varier, A., Vari, A.K. & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science 99, 450-456.Google Scholar

  • 27. Li, F., Wu, X., Tsang, E., Cutler, A.J. (2005). Transcriptional profiling of imbibed Brassica napus seed. Genomics 86, 718-730. DOI: 10.1016/j.ygeno.2005.07.006.CrossrefGoogle Scholar

  • 28. Clément, L., Hurel, C. & Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - Effects of size and crystalline structure. Chemosphere 90, 1083-1090. DOI: 10.1016/j.chemosphere.2012.09.013. Web of ScienceGoogle Scholar

About the article

Published Online: 2014-10-03

Published in Print: 2014-09-01

Citation Information: Polish Journal of Chemical Technology, Volume 16, Issue 3, Pages 25–29, ISSN (Online) 1899-4741, DOI: https://doi.org/10.2478/pjct-2014-0045.

Export Citation

© by Hassan Feizi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abdelazim Yassen, Emam Abdallah, Maybelle Gaballah, and Sahar Zaghloul
International Journal of Agricultural Research, 2017, Volume 12, Number 3, Page 130
Abdullah H. Alsaeedi, Hassan El-Ramady, Tarek Alshaal, Mohamed El-Garawani, Nevien Elhawat, and Mahdi Almohsen
Environmental Science and Pollution Research, 2017
M. Nasir Khan, M. Mobin, Zahid Khorshid Abbas, Khalid A. AlMutairi, and Zahid H. Siddiqui
Plant Physiology and Biochemistry, 2017, Volume 110, Page 194
J. Karimi and S. Mohsenzadeh
Russian Journal of Plant Physiology, 2016, Volume 63, Number 1, Page 119
Durgesh Kumar Tripathi, Vijay Pratap Singh, Sheo Mohan Prasad, Devendra Kumar Chauhan, and Nawal Kishore Dubey
Plant Physiology and Biochemistry, 2015, Volume 96, Page 189

Comments (0)

Please log in or register to comment.
Log in