Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 17, Issue 1 (Mar 2015)

Issues

Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions

Mohammadjavad Seghatoleslami / Hassan Feizi / Gholamreza Mousavi / Aliasghar Berahmand
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/pjct-2015-0016

Abstract

Normally the productivity of cropping systems in arid and semi- arid regions is very low. The sustainable agricultural systems try to find out environmental friendly technologies based on physical and biological treatments to increase crop production. In this study two irrigation treatments (control and water stress) and six methods of fertilizer treatment (control, NPK-F, using magnetic band- M, using silver nano particles- N, M+N and M+N+50% F) on performance of ajowan were compared. Results showed that treatments with magnetic field or base fertilizer had more yield compared to the control and silver nanoparticles (N) treatments. Application of silver nanoparticles had no positive effect on yield. The highest seed and biomass WUE achieved in base fertilizer or magnetic field treatments. Under water stress treatment, seed WUE significantly increased. In conclusion magnetic field exposure, probably by encourage nutrient uptake efficiency could be applied to reduce fertilizer requirement. On the other hand the cultivation of plants under low MF could be an alternative way of WUE improving.

Keywords : biomass; harvest index; yield components

References

  • 1. Ludlow, M.M. & Muchow, R.C. (1990). A critical evaluations of traits for improving crop yields in water- limited environments. Adv. Agron. 43, 107-153.CrossrefGoogle Scholar

  • 2. Razmjoo, K., Heydarizadeh, P. & Sabzalian, M.R. (2008). Effect of salinity and drought stress on growth parameters and essential oil content of Matricaria chamomile. Int. J. Agric. Biol. 10, 451-454. http://www.fspublishers.org, 07-063/ ASB/2008/10-4-451-454.Google Scholar

  • 3. Bannayan, M., Nadjafi, F., Azizi, M., Tabrizi, L. & Rastgoo, M. (2008). Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Ind. Crops Prod. 27, 11-16. http://dx.doi.org/10.1016/j.indcrop.2007.05.002Web of ScienceCrossrefGoogle Scholar

  • 4. Khalid, KhA. (2006). Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 20(4), 289-296.Google Scholar

  • 5. Ahmadian, A., Ghanbari, A., Siahsar, B., Haydari, M., Ramroodi, M. & Mousavinik, S.M. (2011b). Study of Chamomile’s yield and its components under drought stress and organic and inorganic fertilizer using and their residue. J. Microbiol. Antimicrob. 3(2), 23-28.Google Scholar

  • 6. Farahza, K.S., Farahi, A.S. & Sharifi, A. (2002). The effect of drought stress on yield components of Cuminum cyminum. Res. Manuf. J. 54, 42-45.Google Scholar

  • 7. Ucan, K., Killi, F., Gencoglan, C. & Merdun, H. (2007). Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum L.) under field conditions. Field Crops Res. 101, 249-258. http://dx.doi.org/10.1016/j.fcr.2006.11.011 CrossrefGoogle Scholar

  • 8. Turner, N.C. (2004). Agronomic option for improving rainfall use efficiency of crops in dryland farming systems. J. Exp. Bot. 55, 2413-2525. DOI: 10.1093/jxb/erh154.CrossrefGoogle Scholar

  • 9. Khazaie, H.R., Nadjafi , F. & Bannayan, M. (2008). Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus offi cinalis). Ind. Crops Prod. 27, 315-321. http://dx.doi.org/10.1016/j.indcrop.2007.11.007Web of ScienceCrossrefGoogle Scholar

  • 10. Aliabadi Farahani, H., Valadabadi, A.R., Daneshian, J., Shiranirad, A.H. & Khalvati, M.A. (2013). Medicinal and aromatic plants farming under drought conditions. Afr. J. Plant Breed. 1(5), 83-88.Google Scholar

  • 11. Egilla, J.N., Davies, F.T. & Boutton, T.W. (2005). Drought stress influences leaf water content, photosynthesis, and water use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43(1), 135-140. DOI: 10.1007/ s11099-005-5140-2.CrossrefGoogle Scholar

  • 12. Peek, M.S. & Foreth, I.N. (2003). Microhabitat responses to resource pulses in the arid land perennial, Cryptanths flava. J. Ecol. 91, 457-466.CrossrefGoogle Scholar

  • 13. Karlidag, H., Esitken, A., Turan, M. & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 114, 16-20. http://dx.doi.org/10.1016/j.scienta.2007.04.013CrossrefWeb of ScienceGoogle Scholar

  • 14. Dong, S., Neilsen, D., Neilsen, G.H. & Fuchigami, L.H. (2005). Foliar N application reduces soil NO3-N leaching loss in apple orchards. Plant Soil. 268, 357-366. DOI: 10.1007/ s11104-004-0333-1.CrossrefGoogle Scholar

  • 15. Vashisth, A. & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol. 167, 149-156. http://dx.doi.org/10.1016/j.jplph.2009.08.011CrossrefGoogle Scholar

  • 16. Martinez, E., Carbonell, M.V. & Amaya, J.M. (2000). A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro Magnetobiol. 19(3), 271-277. DOI: 10.1081/JBC-100102118.CrossrefGoogle Scholar

  • 17. Aladjadjiyan, A. (2002). Study of the influence of magnetic field on some biological characteristics of Zea mays. J. Cent. Eur. Agric. 3, 89-94.Google Scholar

  • 18. Martinez, E., Carbonell, M.V., Amaya, J.M. & Maqueda, R. (2009). Gemination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int. Agrophys. 23, 45-49.Google Scholar

  • 19. Katsenios, N., Efthimiadou, A., Efthimiadou, P. & Karkanis, A. (2012). Pulsed electromagnetic fields effect in oregano rooting and vegetative propagation: A potential new organic method. Acta Agr. Scand. B-SP. 62 (1), 94-99. DOI: 10.1080/09064710.2011.570374.Web of ScienceCrossrefGoogle Scholar

  • 20. Esitken, A. & Turan, M. (2004). Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agr. Scand. B-SP. 54, 135-139. DOI: 10.1080/09064710310019748.CrossrefGoogle Scholar

  • 21. Levin, M. & Ernst, S.G. (1997). Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos. Bioelectromagnetices 18, 255-263. DOI: 10.1002/(SICI)1521-186X.CrossrefGoogle Scholar

  • 22. Stange, B.C., Rowland, R.E., Rapley, B.I. & Podd, J.V. (2002). ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics 23, 347-354. DOI: 10.1002/ bem.10026.CrossrefGoogle Scholar

  • 23. Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys. 24, 321-324.Google Scholar

  • 24. Nair, R., Varghese, S., Nair, B., Maekawa, T., Yoshida, Y. & Sakthi Kumar, D. (2010). Nanoparticulate material delivery to plants. Plant Sci. 179(3), 154-163. http://dx.doi.org/10.1016/j.plantsci.2010.04.012Web of ScienceCrossrefGoogle Scholar

  • 25. Joseph, T. & Morrison, M. (2006). Nanotechnology in Agriculture and Food. A Nanoforum report. http://www.nanoforum.org. Institute of Nanotechnology. Google Scholar

  • 26. Navrotsky, A. (2000). Nanomaterials in the environment, agriculture, and technology (NEAT). J. Nanopart. Res. 2, 321-323. DOI: 10.1023/A:1010007023813.CrossrefGoogle Scholar

  • 27. Sambhy, V., MacBride, M.M. & Peterson, B.R. (2006). Silver bromide nano particle/ polymer composites: dual action tunable antimicrobial materials. J. Am. Chem. Soc. 128, 9798-9808. DOI: 10.1021/ja061442z.CrossrefGoogle Scholar

  • 28. Choi, O., Kanjun Deng, K., Kim, N., Ross, L., Surampalli, R.Y. & Hu, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066-3074. http://dx.doi.org/10.1016/j.watres.2008.02.021Web of ScienceCrossrefGoogle Scholar

  • 29. van Ieperen, W. (2007). Ion-mediated changes of xylem hydraulic resistance in plant: fact or fiction? Trends Plant Sci. 12, 137-142. http://dx.doi.org/10.1016/j.tplants.2007.03.001CrossrefWeb of ScienceGoogle Scholar

  • 30. Kumari, M., Mukherjee, A. & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 407, 5243-5246. http://dx.doi.org/10.1016/j.scitotenv.2009.06.024CrossrefWeb of ScienceGoogle Scholar

  • 31. Stampoulis, D., Sinha, S.K. & White, J.C. (2009). Assay- -dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43, 9473-9479. DOI: 10.1021/es901695c.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 32. Musante, C. & White, J.C. (2012). Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk- -size particles. Environ Toxicol. 27 (9), 510-517. DOI: 10.1002/ tox.20667.CrossrefWeb of ScienceGoogle Scholar

  • 33. Ahmadian, A., Tavassoli, A. & Amiri, E. (2011a). The interaction effect of water stress and manure on yield components, essential oil and chemical compositions of cumin (Cuminum cyminum). Afr. J. Agric. Res. 6(10), 2309-2315. DOI: 10.5897/AJAR10.989.CrossrefGoogle Scholar

  • 34. De Souza, A., Garcia, D., Sueiro, L., Licea, L. & Porras, E. (2005). Pre-sowing magnetic treatment of tomato seeds: effect on the growth and yield of plants cultivated late in the season. Span. J. Agric. Res. 3(1), 113-122.CrossrefGoogle Scholar

  • 35. Rochalska, M., Grabowska, K. & Ziarnik, A. (2008). Impact of low frequency magnetic fields on yield and quality of sugar beet. Int Agrophys. 23, 163-174.Google Scholar

  • 36. Dhawi, F., Al-Khayri, J.M. & Hassan, E. (2009). Static magnetic field influence on elements composition in Date Palm (Phoenix dactylifera L.). Res. J. Agric. Biol. Sci. 5, 161-166. http://www.insinet.net/rjabs/2009/161-166.pdfGoogle Scholar

  • 37. Hänsch, M. & Emmerling, C. (2010). Effect of silver nanoparticels on the microbiota and enzyme activity in soil. J. Plant Nut. Soil Sci. 173(4), 554-558. DOI: 10.1002/jpln.200900358.CrossrefGoogle Scholar

  • 38. Faqenabi, F., Tajbakhsh, M., Bernooshi, I., Saber-Rezaii, M., Tahri, F., Parvizi, S., Izadkhah, M., Hasanzadeh Gorttapeh, A. & Sedqi, H. (2009). The effect of magnetic field on growth, development and yield of safflower and its comparison with other treatments. Res. J. Biol. Sci. 4 (2), 174-178. DOI: rjbsci.2009.174.178.Google Scholar

  • 39. Earl, H. & Davis, R.F. (2003). Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 95 (3), 688-696. DOI: 10.2134/agronj2003.6880.CrossrefGoogle Scholar

  • 40. Motamedi-Mirhosseini, L., Mohammadi-Nejad, G., Golkar, P. & Bahrami-Nejad, A. (2011). Evaluation of some drought resistance criteria in Cumin (Cuminum cyminum L.) landraces. Adv. Environ. Biol. 5(8), 2369-2372.Google Scholar

  • 41. Cheruth, A.J., Gopi, R., Sankar, B., Gomathinayagam, M. & Panneerselvam, R. (2008). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C.R. Biol. 331(1), 42-47. http://dx.doi.org/10.1016/j.crvi.2007.11.003CrossrefWeb of ScienceGoogle Scholar

  • 42. Faraji, A., Latifi, N., Soltani, A. & Shirani Rad, A.H. (2009). Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric. Water Manage. 96, 132-140. http://dx.doi.org/10.1016/j.agwat.2008.07.014 CrossrefGoogle Scholar

About the article

Published Online: 2015-03-25

Published in Print: 2015-03-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, DOI: https://doi.org/10.1515/pjct-2015-0016.

Export Citation

© by Mohammadjavad Seghatoleslami. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhiming Cao, Cheyenne Stowers, Lorenzo Rossi, Weilan Zhang, Leonardo Lombardini, and Xingmao Ma
Environ. Sci.: Nano, 2017, Volume 4, Number 5, Page 1086
[2]
Farhat Yasmeen, Naveed Iqbal Raja, Abdul Razzaq, and Setsuko Komatsu
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2016, Volume 1864, Number 11, Page 1586
[3]
M. Nasir Khan, M. Mobin, Zahid Khorshid Abbas, Khalid A. AlMutairi, and Zahid H. Siddiqui
Plant Physiology and Biochemistry, 2017, Volume 110, Page 194

Comments (0)

Please log in or register to comment.
Log in