Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 17, Issue 1 (Mar 2015)

Issues

Flame resistant cellulosic substrate using banana pseudostem sap

S. Basak
  • Corresponding author
  • Central Institute for Research on Cotton Technology (CIRCOT), Indian Council of Agricultural Research, Chemical and Biochemical Division, Adenwala Road, Matunga, Mumbai 400019, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kartick. K. Samanta
  • Central Institute for Research on Cotton Technology (CIRCOT), Indian Council of Agricultural Research, Chemical and Biochemical Division, Adenwala Road, Matunga, Mumbai 400019, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Saxena
  • Central Institute for Research on Cotton Technology (CIRCOT), Indian Council of Agricultural Research, Chemical and Biochemical Division, Adenwala Road, Matunga, Mumbai 400019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S.K. Chattopadhyay / R. Narkar
  • Central Institute for Research on Cotton Technology (CIRCOT), Indian Council of Agricultural Research, Chemical and Biochemical Division, Adenwala Road, Matunga, Mumbai 400019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Mahangade
  • Central Institute for Research on Cotton Technology (CIRCOT), Indian Council of Agricultural Research, Chemical and Biochemical Division, Adenwala Road, Matunga, Mumbai 400019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G.B. Hadge
  • Central Institute for Research on Cotton Technology (CIRCOT), Indian Council of Agricultural Research, Chemical and Biochemical Division, Adenwala Road, Matunga, Mumbai 400019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/pjct-2015-0018

Abstract

Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS), an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI), horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA), and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.

Keywords : banana pseudostem sap; cellulose; cotton fabric; flame retardant; thermogravimetry

References

  • 1. Kandola, B.K., Horrocks, A.R., Price, D. & Coleman G.V. (2006). Flame retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J. Macromol. Sci., 36(4), 721-794. DOI: 10.1080/15321799608014859.CrossrefGoogle Scholar

  • 2. Charuchinda, S., Srikulkit, K. & Mowattana, T. (2005). Coapplication of sodium polyphosphateand chitosan to improve flame retardancy of cotton fabric. J. Sci. Res. Chula. Univ., 30 (1), 97-110. DOI: 10.1177/0734904112443658.CrossrefGoogle Scholar

  • 3. Horrocks, A.R. (2011). Flame retardant challanges for textiles and fibres. Polym. Degrad. Stabil., 96 (3), 377-392. DOI: 10.1016/j.polymdegradstab.2010.03.036.CrossrefGoogle Scholar

  • 4. Kei, S.C.H. (2010). The effect of atmospheric pressure plasma on flame retardant property of cotton. Institute of Textile and Clothing, Bachelor of Arts in Fashion Technology thesis, Hong Kong Polytechnic University.Google Scholar

  • 5. Katovic, D., Grgae, S.F., Vukusic, S.B. & Katovic, A. (2012). Formaldehyde free binding systems for flame retardant finishing of cotton fabrics. Fibres Text. East. Eur. 1(90), 94-98.Google Scholar

  • 6. Nguyen, T.M.D., Chang, S., Condon, B., Uchimiya, M. & Fortier, C. (2012). Development of an environmentally friendly halogen free phosphorous nitrogen bond flame retardants for cotton fabrics. Polym. Adv. Technol. 23, 1555-1563. DOI: 10.1002/pat.3029.Web of ScienceCrossrefGoogle Scholar

  • 7. Hady, A.A.E., Farouk, A. & Sharaf, S. (2013). Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acid. Carbohydr. Polym. 92 (1), 400-406. DOI: 10.1016/j.carbpol.2012.08.085.Web of ScienceCrossrefGoogle Scholar

  • 8. Sarvanan, D., Lakshmi, S.N.S., Raja, K.S. & Vasahi, N.S. (2013). Biopolishing of cotton fabric with fungal cellulose and its effect on the morphology of cotton fibres, Indian. J. Fibre Text. Res. 38 (2), 156-160.Google Scholar

  • 9. Joshi, M., Ali, S.W. & Rajendran, S. (2007). Antibacterial finishing of polyester cotton blend fabric using neem: A natural bioactive agent. J. Appl. Polym. Sci.106 (2), 793-800. DOI: 10.1002/app.26323.CrossrefGoogle Scholar

  • 10. Salah, S.M. (2012). Antibacterial activity and UV protective property of some Egyptian cotton fabrics treated with aquous extract of banana peel. Int. J. Cloth. Sci. 1(1), 1-6. DOI: 10.5923/j.clothing.20120101.01.CrossrefGoogle Scholar

  • 11. Alongi, J., Carletto, R.A., Balsio, A.D., Cuttica, F., Carosio, F., Bosco, F. & Malucelli, G. (2013). Intrinsic intumescent like flame retardant properties of DNA treated cotton fabrics. Carbohydr. Polym. 96(1), 296-304. DOI: 10.1016/j carb pol.2013.03.066.Web of ScienceCrossrefGoogle Scholar

  • 12. Bosco, F., Carletto, R.A., Alongi, J., Marmo, L., Blasio, A.D. & Malucelli, G. (2012). Thermal stability of flame resistantance of cotton fabrics treated with whey proteins. Carbohydr. Polym. 94(1), 372-377. DOI: 10.1016/j Carb pol.2012.12.075.Web of ScienceCrossrefGoogle Scholar

  • 13. Carosio, F., Blasio, A.D., Cuttica, F., Alongi, J. & Malucelli, G. (2014). Polyester and polyester cotton blend fabrics have been treated with caseins. Ind. Eng. Chem. Res. 53(10), 3917-3923. DOI: 10.1021/ie404089t.CrossrefGoogle Scholar

  • 14. Kolambe, B.N., Patel, K.K., Pawar, S.L., Patel, J.M. & Prajapati, D.R. (2013). WIPO patent No. WO/2013/001478.Google Scholar

  • 15. Sayed M.E., Mansour O.Y., Selim I.Z. & Ibrahim M.M. (2001). Identification and utilisation of banana plant juice and its pulping liquors as anticorrosive materials. J. Sci. Ind. Res. 60, 738-747. DOI: org/10.1155/2013/784186.Google Scholar

  • 16. Neog, S.R. & Deka, C.D. (2013). Salt substitute from banana plant (Musa Balbiciana Colla). J. Chem. Pharm. Res. 5 (6), 155-159.Google Scholar

  • 17. Petrilli, T. (2008). Technology and development programme, 0851-2348P-MTDC: 1-10.Google Scholar

  • 18. White, H.R., Nam, S. & Parika, V.D. (2012). Cone calorimeter evaluation of two flame retardant cotton fabrics. Fire Mater. 37 (1), 46-57. DOI: 10.1002/fam.2111.Web of ScienceCrossrefGoogle Scholar

  • 19. Shen, Y.M., Kuan, F.C., Kuan, C.H., Chen, H.C., Wang, H.J., Yip, C.M. & Chiang, L.C. ( 2013). Preparation , characterization , thermal, and flame retardant properties of green silicon containing epoxy functionalized grapheme nanosheets composites. J. Nanomat. 2013, 1-10. DOI: 10.1155/2013/747963.CrossrefGoogle Scholar

  • 20. Xing, T.L., Liu, J., Li, S.W. & Chen, G.Q. (2012). Thermal properties of flame retardance cotton fabric grafted by dimethyl methacruloyloxyethylphosphate. Therm. Sci. 16 (5), 1472-1475.DOI: 10.2298/TSCI1205472X.CrossrefGoogle Scholar

  • 21. Mostashari, S.M. & Mostashari, S.Z. (2009). Thermogravimetry of deposited ammonium aluminium sulphate dodecahydrate used as flame retardant for cotton fabrics. Cellul. Chem. Technol. 43 (9-10), 455-459. Google Scholar

  • 22. Karastergiou, P.S. & Philippou, J.L. (2000). Thermogravimetric analysis of fire retardant treated particle boards. Wood Fire Saf. (pp. 388-392).Google Scholar

  • 23. Cilurzo, F., Selmin, F., Minghetti, P. & Montanari, L. (2005). The effects of bivalent inorganic salts on the mucoadhesive performance of a polymethylmethacrylate sodium salt. Int. J. Pharm. 301 (1-2), 62-70. DOI: 10.1016/j.ijpharm.2005.05.029.CrossrefGoogle Scholar

  • 24. Miller, A.F. & Wilkins, H.C. (1952). Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem. 24 (8), 12530-1294. DOI: 10.1021/ac60068a007.CrossrefGoogle Scholar

  • 25. Honeycutt, W., Xing, B., Mcdowell, W.R., Pellechias, J.P. & Zhang, T. (2007). Solid state fourier transform infrared and 31P nuclear magnetic resonance spectral features of phosphate compound. Soil Sci. 172 (7), 501-515. DOI: 10.1097/ SS.0b013e318053dba0.Web of ScienceCrossrefGoogle Scholar

  • 26. Mostashari, S.M. & Baie, S. (2010). Superiority of lithium bromide over lithium chloride used as flame retardants on cotton substrates. Cellul. Chem. Technol. 44 (7-8), 299-303.Google Scholar

  • 27. Soares, S., Camino, G. & Levchik, S. (1998). Effect of metal carboylates on the thermal decomposition of cellulose.Polym. Degrad. Stabil. 62 (1), 25-31. DOI: 10.1016/S0141-3910(97)00256-5.CrossrefGoogle Scholar

  • 28. Banerjee, S.K., Day, A. & Ray, P.K. (1985). Fire proofing jute. Text. Res. J. 56 (5), 338-339. DOI: 10.1177/004051758605600510.CrossrefGoogle Scholar

  • 29. Levchik, S.V. & Wikie, C.A. (2000). In A.F. Grand & C.A. Wikie (Eds.), Fire Retard. Polymer. Mater. 171-215. Marcel Dekker Inc, NewYork. Google Scholar

About the article

Published Online: 2015-03-25

Published in Print: 2015-03-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, DOI: https://doi.org/10.1515/pjct-2015-0018.

Export Citation

© by S. Basak. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[3]
S Basak, S Saxena, SK Chattopadhyay, R Narkar, and R Mahangade
Journal of Industrial Textiles, 2016, Volume 46, Number 4, Page 1003
[4]
A. Shukla, S. Basak, S. W. Ali, and R. Chattopadhyay
Cellulose, 2017, Volume 24, Number 1, Page 423
[5]
Santanu Basak and S. Wazed Ali
Polymer Degradation and Stability, 2016, Volume 133, Page 47
[6]
Aicha Boukhriss, Said Gmouh, Hassan Hannach, Jean-Philippe Roblin, Omar Cherkaoui, and Damien Boyer
Cellulose, 2016, Volume 23, Number 5, Page 3355
[7]
Jenny Alongi, Fabio Cuttica, Federico Carosio, and Serge Bourbigot
Cellulose, 2015, Volume 22, Number 5, Page 3477

Comments (0)

Please log in or register to comment.
Log in