Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 17, Issue 4 (Dec 2015)

Issues

Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization

Magdalena Onyszko
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Piastów 45, 70-311 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karolina Urbas
  • Corresponding author
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Piastów 45, 70-311 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Malgorzata Aleksandrzak
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Piastów 45, 70-311 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewa Mijowska
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Piastów 45, 70-311 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-27 | DOI: https://doi.org/10.1515/pjct-2015-0074

Abstract

Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.

Keywords: reduced graphene oxide; platinum nanoparticles; palladium nanoparticles; zirconia nanoparticles; manganese dioxide nanoparticles

LITERATURE CITED

  • 1. Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat. Mater. 6, 183–191. DOI: 10.1038/nmat1849.CrossrefGoogle Scholar

  • 2. Katsnelson, M.I. (2007). Graphene: carbon in two dimensions. Mater. Today 10, 20–27. DOI: 10.1016/S1369-7021(06)71788-6.CrossrefGoogle Scholar

  • 3. Loh, K.P., Bao, Q., Ang, P.K. & Yang, J. (2010). The chemistry of graphene. J. Mater. Chem. 20, 2277–2289. DOI: 10.1039/b920539j.CrossrefGoogle Scholar

  • 4. Loh, K.P., Bao, Q., Eda, G. & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024. DOI: 10.1038/nchem.907.CrossrefGoogle Scholar

  • 5. Lerf, A., He, H. & Forster, M. (1998). Structure of graphite oxide revisited. J. Phys. Chem. B. 102, 4477–4482. DOI: 10.1021/jp9731821.CrossrefGoogle Scholar

  • 6. Wang, S., Goh, B.M., Manga, K.K., Bao, Q., Yang, P. & Loh, K.P. (2010). Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene−Organic Hybrid Wire with Photovoltaic Properties. ACS Nano 4, 6180–6186. DOI: 10.1021/nn101800n.CrossrefGoogle Scholar

  • 7. Hu, H., Allan, C.C. K., Li, J., Kong, Y., Wang, X., Xin, J. H. & Hu, H. (2014). Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 7, 418–433. DOI: 10.1007/s12274-014-0408-0.CrossrefGoogle Scholar

  • 8. Muszynski, R., Seger, B. & Kamat, P.V. (2008). Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C 112, 5263–5266. DOI: 10.1021/jp800977b.CrossrefGoogle Scholar

  • 9. Zhu, J., Zhu, T., Zhou, X, Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. &Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G.CrossrefGoogle Scholar

  • 10. Ling, Q., Yang, M., Li, C.S. & Zhang, A.M. (2015). Preparation of Monolayered Ce-Fe Oxides Dispersed on Graphene and Their Superior Adsorptive Behavior, Fuller. Nanotub. Car. N. 23, 158–164. DOI: 10.1080/1536383X.2013.863759.CrossrefGoogle Scholar

  • 11. Li, C.X., Hu, C.G., Zhao, Y., Song, L., Zhang, J., Huang, R.D. & Qu, L.T. (2014). Decoration of graphene network with metal-organic frameworks for enhanced electrochemical capacitive behavior, Carbon 78, 231–242. DOI: 10.1016/j.carbon.2014.06.076.CrossrefGoogle Scholar

  • 12. Lu, C.H., Yang, H.H., Zhu, C.L., Chen, X. & Chen, G.N. (2009). Angew. Chem. Int. Ed. 121, 4879–4881. DOI: 10.1002/ange.200901479.CrossrefGoogle Scholar

  • 13. Huang, J., Zheng Q., Kim, J.K. & Li, Z. (2013). A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosens. Bioelectron. 43, 379–383. DOI: 10.1016/j.bios.2012.12.056.CrossrefGoogle Scholar

  • 14. Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian W. & Wei, F. (2010). A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 22, 3723–3728. DOI: 10.1002/adma.201001029.CrossrefGoogle Scholar

  • 15. Lim, S., Kang, B., Kwak, D., Lee, W.H., Lim, J.A. & Cho, K. (2012). Inkjet-Printed Reduced Graphene Oxide/Poly(VinylAlcohol) Composite Electrodes for Flexible Transparent Organic Field-Effect Transistors. J. Phys. Chem. C. 116, 7520–7525. DOI: 10.1021/jp203441e.CrossrefGoogle Scholar

  • 16. Dixon, D., Lemonine, P., Hamilton, J., Lubarsky, G. & Archer, E. (2015). Graphene oxide-polyamide 6 nanocomposites produced via in situ polymerization. J. Thermoplast. Compos. 28, 372–389. DOI: 10.1177/0892705713484749.CrossrefGoogle Scholar

  • 17. Wojtoniszak, M., Urbas, K., Peruzynska, M., Kurzawski, M., Drozdzik, M. & Mijowska, E. (2013). Covalent conjugation of graphene oxide with methotrexate and its antitumor activity, Chem. Phys. Lett. 568, 151–156. DOI: 10.1016/j.cplett.2013.03.050.CrossrefGoogle Scholar

  • 18. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C. & Brus, L.E. (2009). Photochemical Reactivity of Graphene. J. Am. Chem. Soc. 131, 17099–17101. DOI: 10.1021/ja9043906.CrossrefGoogle Scholar

  • 19. Zhu, J., Zhu, T., Zhou, X., Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. & Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G.CrossrefGoogle Scholar

  • 20. Shi, W., Zhu, J., Sim, D.H., Tay, Y.Y., Lu, Z.Y., Zhang, X.J., Zhang, H., Hng, H.H. & Yan, Q.Y. (2011). Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21, 3422–3427. DOI: 10.1039/C0JM03175E.CrossrefGoogle Scholar

  • 21. Li, Y., Tang, L. & Li, J. (2009). Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846–849. DOI: 10.1016/j.elecom.2009.02.009.CrossrefGoogle Scholar

  • 22. Xie, L, Ling, X., Fang, Y., Zhang, J. & Liu, Z. (2009). Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc. 131, 9890–9891. DOI: 10.1021/ja9037593.CrossrefGoogle Scholar

  • 23. Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F.Y.C., Yan, Q., Chen, P. & Zhang, H. (2009). In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846. DOI: 10.1021/jp903821n.CrossrefGoogle Scholar

  • 24. Liu, J.B., Fu, S.H., Yuan, B., Li, Y.L. & Deng, Z.X. (2010). Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132, 7279–7281. DOI: 10.1021/ja100938r.CrossrefGoogle Scholar

  • 25. Shen, J.F., Shi, M., Li, N., Yan, B., Ma, H.W., Hu, Y.Z., & Ye, M.X. (2010). Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 3, 339–349. DOI: 10.1007/s12274-010-1037-x.CrossrefGoogle Scholar

  • 26. Scheuermann, G.M., Rumi, L., Steurer, P., Bannwarth, W. & Mulhaupt, R. (2009). Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270. DOI: 10.1021/ja901105a.CrossrefGoogle Scholar

  • 27. Johnson, J.L., Behnam, A., Pearton, S.J. & Ural, A. (2010). Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Adv. Mater. 22, 4877–4880. DOI: 10.1002/adma.201001798.CrossrefGoogle Scholar

  • 28. Si, Y.C. & Samulski, E.T. (2008). Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater. 20, 6792–6797. DOI: 10.1021/cm801356a.CrossrefGoogle Scholar

  • 29. Hassan, H.M.A., Abdelsayed, V., Khder, A., AbouZeid, K. M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., El-Azhary, A.A. (2009). Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832–3837. DOI: 10.1039/b906253j.CrossrefGoogle Scholar

  • 30. Pavithra, C.L.P., Sarada, B.V., Rajulapati, K.V., Rao, T.N. & Sundararajan, G. (2014). A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness. Sci. Rep. 4, 4049. DOI: 10.1038/srep04049.CrossrefGoogle Scholar

  • 31. Ji, Z., Shen, X., Zhu, G., Zhou, H. & Yuan, A. (2012). Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J. Mater. Chem. 22, 3471–3477. DOI: 10.1039/C2JM14680K.CrossrefGoogle Scholar

  • 32. Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X. & Sun, D.D. (2010). Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications. Adv. Funct. Mater. 20, 4175–4181. DOI: 10.1002/adfm.201001391.CrossrefGoogle Scholar

  • 33. Du, J., Lai, X., Yang, N., Zhai, J., Kisailus, D., Su, F., Wang, D. & Jiang, L. (2010). Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano 5, 590–596. DOI: 10.1021/nn102767d.CrossrefGoogle Scholar

  • 34. Yin, Z., Wu, S., Zhou, X., Huang, X., Zhang, Q., Boey, F. & Zhang, H. (2010). Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6, 307–312. DOI: 10.1002/smll.200901968.CrossrefGoogle Scholar

  • 35. Zhang, L.S., Jiang, L.Y., Yan, H.J., Wang, W.D., Wang, W., Song, W.G., Guo, Y.G. & Wan, L.J. (2010). Monodispersed SnO2 Nanoparticles on both Sides of Single Layer Graphene Sheets as Anode Materials in Li-ion Batteries. J. Mater. Chem. 20, 5462–5467. DOI: 10.1039/C0JM00672F.CrossrefGoogle Scholar

  • 36. Yan, J., Fan, Z., Wei, T., Qian, W., Zhang, M. & Wei, F. (2010). Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48, 3825–3833. DOI: 10.1016/j.carbon.2010.06.047.CrossrefGoogle Scholar

  • 37. Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y. & Chen, Y. (2009). Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710–2714. DOI: 10.1039/b821416f.CrossrefGoogle Scholar

  • 38. Liang, J., Xu, Y., Sui, D., Zhang, L., Huang, Y., Ma, Y., Li, F. & Chen, Y. (2010). Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 114, 17465–17471. DOI: 10.1021/jp105629r.CrossrefGoogle Scholar

  • 39. Innocenzi, P., Malfatti, L., Lasio, B., Pinna, A., Loche, D., Casula, M.F., Alzari, V. & Mariani, A. (2014). Sol–gel chemistry for graphene–silica nanocomposite films. New J. Chem. 38, 3777–3782. DOI: 10.1039/C4NJ00535J.CrossrefGoogle Scholar

  • 40. Jiang, N., Xiu, Z., Xie, Z., Li, H., Zhao, G., Wang, W., Wu, Y. & Hao, X. (2014). Reduced graphene oxide–CdS nanocomposites with enhanced visible-light photoactivity synthesized using ionic-liquid precursors. New J. Chem. 38, 4312–4320. DOI: 10.1039/C4NJ00152D.CrossrefGoogle Scholar

  • 41. Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., Pan, N., Yan, L., Wang, X. & Hou, J.G. (2010). Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 4, 3033–3038. DOI: 10.1021/nn100134j.CrossrefGoogle Scholar

  • 42. Allen, M.J., Tung, V.C. & Kaner, R.B. (2009). Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145. DOI: 10.1021/cr900070d.CrossrefGoogle Scholar

  • 43. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814. DOI: 10.1021/nn1006368.CrossrefGoogle Scholar

  • 44. Sun, Z., Rong, Z., Wang, Y., Xia, Y., Du, W. & Wang, Y. (2014). Selective hydrogenation of cinnamaldehyde over Pt nanoparticles deposited on reduced graphene oxide. RSC Adv. 4, 1874–1878. DOI: 10.1039/C3RA44962A.CrossrefGoogle Scholar

  • 45. Some, S., Kim, Y., Yoon, Y., Yoo, H.J., Lee, S., Park, Y. & Lee, H. (2013). High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 3, 1–5. DOI:10.1038/srep01929.CrossrefGoogle Scholar

  • 46. Satish, B., Venkateswara, R.K., Shilpa, C.C.H. & Tejaswi, T. (2013). Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebseilla and Staphylococus. Int. J. Adv. Biotechnol. Res. 4, 142–146.Google Scholar

  • 47. Reich, S.S. & Thomsen, C. (2004). Raman spectroscopy of graphite. Phil. Trans. R. Soc. Lond. A 362, 2271–2288. DOI: 10.1098/rsta.2004.1454.CrossrefGoogle Scholar

  • 48. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prudhomme, R.K., Aksay, I.A. & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41. DOI: 10.1021/nl071822y.CrossrefGoogle Scholar

  • 49. Charlier, J.C., Eklund, P.C., Zhu, J. & Ferrari, A.C. (2008). Electron and phonon properties of graphene: their relationship with carbon nanotubes. Top Appl. Phys. 111, 673–709. DOI: 10.1007/978-3-540-72865-8_21.CrossrefGoogle Scholar

  • 50. Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M. & Grossman, J.C. (2014). Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6, 151–158. DOI: 10.1038/nchem.1820.CrossrefGoogle Scholar

  • 51. Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P. & Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5, 191–198. DOI: 10.1021/nn102339t.CrossrefGoogle Scholar

  • 52. Hyde, T. (2008). Crystallite Size Analysis of Supported Platinum Catalysts by XRD. Platinum Metals Rev. 52, 129–130. DOI: 10.1595/147106708X299547.CrossrefGoogle Scholar

  • 53. Liu, S., Wang, J., Zeng, J., Ou, J., Li, Z., Liu, X. & Yang, S. (2010). „Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J. Pow. Sour. 195, 4628–4633. DOI: 10.1016/j.jpowsour.2010.02.024.CrossrefGoogle Scholar

  • 54. Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. (2011). Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. 115, 17009–17019. DOI: 10.1021/jp203741y.CrossrefGoogle Scholar

  • 55. Yuan, J.K., Li, W.N., Gomez, S. & Suib, S.L. (2005). Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. J. Am. Chem. Soc. 127, 14184–14185. DOI: 10.1021/ja053463j.CrossrefGoogle Scholar

  • 56. Yuan, J., Laubernds, K., Zhang, Q. & Suib, S.L. (2003). Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres. J. Am. Chem. Soc. 125, 4966–4967. DOI: 10.1021/ja0294459.CrossrefGoogle Scholar

  • 57. Li, Z., Wang, J., Wang, Z., Ran, H., Yang Li, Y., Han, X. & Yang, S. (2012). Synthesis of a porous birnessite manganese dioxide hierarchical structure using thermally reduced graphene oxide paper as a sacrificing template for supercapacitor application. New J. Chem. 36, 1490–1495. DOI: 10.1039/c2nj21052e.CrossrefGoogle Scholar

  • 58. Gui, Z., Gillette, E., Duay, J., Hu, J., Kim, N. & Lee, S. B. (2015). Co-electrodeposition of RuO2–MnO2 nanowires and the contribution of RuO2 to the capacitance increase. Phys. Chem. Chem. Phys. 17, 15173–15180. DOI: 10.1039/C5CP01814E.CrossrefGoogle Scholar

  • 59. Abdolhosseinzadeh, S., Asgharzadeh, H., & Kim, H.S. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 1–7. DOI: 10.1038/srep10160.CrossrefGoogle Scholar

  • 60. Stankovich, S., Dikina, D.A., Pinera, R.D., Kohlhaasa, K. A., Kleinhammesc, A., Jiac, Y., Wuc, Y., Nguyenb, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.CrossrefGoogle Scholar

  • 61. Kalbac, M., Reina-Cecco, A., Farhat, H., Kong, J., Kavan, L. & Dresselhaus, M.S. (2010). The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 4, 6055–6063. DOI: 10.1021/nn1010914.CrossrefGoogle Scholar

  • 62. Casiraghi, C. (2009). Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi. 3, 175–177. DOI: 10.1002/pssr.200903135.CrossrefGoogle Scholar

  • 63. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C. & Sood, A.K. (2008). Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnol. 3, 210–215. DOI: 10.1038/nnano.2008.67.CrossrefGoogle Scholar

  • 64. Heydrich, S., Hirmer, M., Preis, C., Korn, T., Eroms, J., Weiss, D. & Schüller, C. (2010). Scanning Raman spectroscopy of graphene antidot lattices: evidence for systematic p-type doping. Appl. Phys. Lett. 97, 043113-1. DOI: 10.1063/1.3474613.CrossrefGoogle Scholar

  • 65. Lee, J., Novoselov, K.S. & Shin, H.S. (2011). Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5, 608–612. DOI: 10.1021/nn103004c.CrossrefGoogle Scholar

  • 66. Wang, W.X., Liang, S.H., Yu, T., Li, D.H., Li, Y.B. & Han, X.F. (2011). The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 109, 07C501-07C501-3. DOI: 10.1063/1.3536670.CrossrefGoogle Scholar

  • 67. Iqbal, M.W., Singh, A.K., Iqbal, M.Z. & Eom, J. (2012). Raman fingerprint of doping due to metal adsorbates on graphene. J. Phys.: Condens. Matter. 24, 335301–335308. DOI: 10.1088/0953-8984/24/33/335301.CrossrefGoogle Scholar

  • 68. Lucchese, M.M., Stavale, F., Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A. & Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597. DOI: 10.1016/j.carbon.2009.12.057.CrossrefGoogle Scholar

About the article

Published Online: 2015-11-27

Published in Print: 2015-12-01


Citation Information: Polish Journal of Chemical Technology, ISSN (Online) 1899-4741, DOI: https://doi.org/10.1515/pjct-2015-0074.

Export Citation

© 2015 Magdalena Onyszko et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mahmoud Nasrollahzadeh, Zahra Issaabadi, Mohammad Mostafa Tohidi, and S. Mohammad Sajadi
The Chemical Record, 2017

Comments (0)

Please log in or register to comment.
Log in