Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 18, Issue 1

Issues

Dynamic-accumulative operation policy of continuous distillation for the purification of anisole

Zhibo Wang / Shuairong Li / Caijiao Wang / Xianghai Guo / Peng Bai
Published Online: 2016-04-04 | DOI: https://doi.org/10.1515/pjct-2016-0006

Abstract

In the B10 isotope enrichment industry, the purification of anisole mixture makes great sense. A dynamic-accumulative operation policy of continuous distillation (DACD) with repeated filling and dumping of the still is proposed for the separation of trace heavy impurities in the recycled anisole. To simulate and optimize the purification process of anisole, a mathematical model of DACD is derived, and the computer codes are developed in the MATLAB environment. Moreover, the experiment is performed in a pilot-scale distillation column. The results show that the experimental date agrees well with simulation results. DACD could solve the difficulty of flow rate control when the bottom flow rate is very small in continuous distillation. The size of the still in this operation mode is also smaller than that in batch distillation. And the yield of anisole is raised to 99.91%. In a word, DACD is especially suitable for separating trace heavy impurities from the recycled anisole.

Keywords: anisole recycling; dynamic-accumulative operation policy; continuous distillation; simulation

LITERATURE CITED

  • 1. Palko, A.A. & Drury, J.S. (1969). The Chemical Fractionation of Boron Isotopes. Adv. Chem. Ser. 89(3), 40–56. DOI: 10.1021/ba-1969-0089.ch003.CrossrefGoogle Scholar

  • 2. Conn, A.L. & Wolf, J.E. (1958). Large-Scale Separation of Boron Isotopes. Ind. Eng. Chem. 50(9), 1231–1234. DOI: 10.1021/ie50585a024.CrossrefGoogle Scholar

  • 3. Herbst, R.S. & McCandless, F.P. (1994). Improved Donors for the Separation of the Boron Isotopes by Gas-Liquid Exchange Reactions. Sep. Sci. 29(10), 1293–1310. DOI: 10.1080/01496399408006941.CrossrefGoogle Scholar

  • 4. Verbeke, J.M. & Leung, K.N. (2000). Development of a sealed-accelerator-tube neutron generator. J. Vujic. Appl. Radiat. Isot. 53(4–5), 801–805. DOI: 10.1016/S0969-8043(00)00262-1.CrossrefGoogle Scholar

  • 5. Angelone, M., Atzeni, S. & Rollet, S. (2002). Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy. Nucl. Instrum. Methods Phys. Res., Sect. A. 487(3), 585–594. DOI: 10.1016/S0168-9002(02)00399-6.CrossrefGoogle Scholar

  • 6. Palko, A.A. (1959). Separation of Boron Isotopes in the Bench-Scale Boron Fluoride-Anisole Unit. Ind. Eng. Chem. 51(2), 121–124. DOI: 10.1021/ie50590a029.CrossrefGoogle Scholar

  • 7. Qiu, L. (1990). The Principle of Chemical Separation of Isotopes (pp.192–199). China: Atomic Energy Press.Google Scholar

  • 8. Oi, T., Shimazaki, H., Ishii, R. & Hosoe, M. (1997). Boron Isotope Fractionation in Liquid Chromatography with Boron-Specific Resins as Column Packing Material Sep. Sci. Technol. 32(11), 1821–1834. DOI: 10.1080/01496399708000739.CrossrefGoogle Scholar

  • 9. Ivanov, V.A. & Katalnikov, S.G. (2001). Physico-chemical and engineering principles of boron isotopes separation by using BF3–ANISOLE•BF3 SYSTEM. Sep. Sci. Technol. 36(8–9), 1737–1768. DOI: 10.1081/SS-100104760.CrossrefGoogle Scholar

  • 10. Wang, Q.Z., Xiao, Y.K., Wang, Y.H., Zhang, C.G. & Wei, H.Z. (2002). Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron. Chin. J. Chem. Eng. 20(1), 45–50. DOI: 10.1002/cjoc.20020200110.CrossrefGoogle Scholar

  • 11. Cui, J., Zhang, W.J. & Miao, F.H. (2012). Dynamic Simulation of the Boron Isotopes Separation by Chemical Exchange Method. Adv. Mater. Res. 442, 62–66. DOI: 10.4028/www.scientific.net/AMR.442.62.Crossref

  • 12. Huang, Y.P., Cheng, S. & Zhang, W.J. (2012). Gas purification and collection process of high aboundance of 10BF3. Chin. J. Chem. Eng. 40(1), 68–72. From http://lib.cqvip.com/qk/92951X/201201/40589685.html

  • 13. Huang, Y., Cheng, S., Xu, J. & Zhang, W.J. (2011). Research on chemical exchange process of boron isotope separation. Procedia Engineering. 18, 151–156. DOI: 10.1016/j.proeng.2011.11.024.CrossrefGoogle Scholar

  • 14. Song, S., Mu, Y.J., Li, X.F. & Bai, P. (2010). Advances in boron-10 isotope separation by chemical exchange distillation Ann. Nucl. Energy. 37(1), 1–4. DOI: 10.1016/j.anucene.2009.10.008.CrossrefGoogle Scholar

  • 15. Zheng, W., Zhang, W.J. & Xu, J. (2011). Influencing factors on separating boron isotope by boron trifluoride and anisole system. Chin. J. Chem. Eng. 39(11), 17–20. From http://www.cnki.com.cn/Article/CJFDTotal-IMIY201111006.htm

  • 16. Katalnikov, S.G., Dmitrevskaya, L.I. & Voloshchuk, A.M. (1970). Maximum concentration of impurities in anisole and phenetole during the use of their complexes with boron trifluoride for separating boron isotopes. Tr. Mosk. Khim.-Tekhnol. Inst.65, 55–59. From http://d.wanfangdata.com.cn/ExternalRe-source-tws200601012%5E27.aspx

  • 17. Pang, B.L. (2007). Simulation and Experiment of Purifying Anisole. Unpublished master dissertation, Tianjin University, Tianjin, China.Google Scholar

  • 18. Ma, S.S. (2007). Application of Artificial Neural Network in modeling Anisole Distillation Column. Unpublished master dissertation, Tianjin University, Tianjin, China.Google Scholar

  • 19. Luo, Y.Q., Yuan, X.G., Yang, Z.J. & Liu, C.J. (2005). A Novel Operation Policy for Dilute Component Separation-Quasi-batch Distillation. Chin. J. Chem. Eng. 13(03), 338–342, from http://www.cnki.com.cn/article/cjfdtotal-zhgc200503010.htm

  • 20. Dong, H.X., Guo, Y.J. & Zhu, R.K. (2002). The Separation of Trace Components in Rare Solution and the Choice of Separation Method. IJAST 29(1), 55–57. DOI: 10.3969/j.issn.1009-671X.2002.01.020.CrossrefGoogle Scholar

About the article

Published Online: 2016-04-04

Published in Print: 2016-03-01


Citation Information: Polish Journal of Chemical Technology, Volume 18, Issue 1, Pages 33–39, ISSN (Online) 1899-4741, DOI: https://doi.org/10.1515/pjct-2016-0006.

Export Citation

© 2016 Zhibo Wang et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in