Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
Online
ISSN
1899-4741
See all formats and pricing
More options …
Volume 18, Issue 3

Issues

Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

Pradip C. Mandal
  • Corresponding author
  • Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia Bangladesh
  • Titas Gas Transmission and Distribution Co. Ltd., 105, Kazi Nazrul Islam Avenue, Kawran Bazar, Dhaka-1215, Bangladesh
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thasvinya Nagarajan
  • Universiti Teknologi PETRONAS, Department of Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-13 | DOI: https://doi.org/10.1515/pjct-2016-0047

Abstract

Cyclopentane carboxylic acid (CPCA) is a model compound of Naphthenic acids (NAs). This objective of this paper is to discover total acid number (TAN) reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH). The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP) of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.

Keywords: cyclopentane carboxylic acid; subcritical methanol; total acid number; naphthenic acid; activation energy

References

  • 1. Hardacre, C., Goodrich, P. & Anderson, K. (2012). Processing for removing organic acids from crude oil and crude oil distillates. U.S. Pat. No. 20120132564 A1.Google Scholar

  • 2. Wang, Y.Z., Li, J.Y., Sun, X.Y., Duan, H.L., Song, C.M., Zhang, M.M. & Liu, Y.P. (2014). Removal of naphthenic acids from crude oils by fixed-bed catalytic esterifi cation. Fuel 116, 723-728. DOI: 10.1016/J.FUEL.2013.08.047.CrossrefGoogle Scholar

  • 3. Mandal, P.C., Wahyudiono, Sasaki, M. & Goto, M. (2013). Non-catalytic reduction of total acid number (TAN) of naphthenic acids (NAs) using supercritical methanol. Fuel Process. Technol. 106, 641-644. DOI: 10.1016/J.FUPROC.2012.09.058.Web of ScienceCrossrefGoogle Scholar

  • 4. Clemente, J.S. & Fedorak, P.M. (2005). A review of the occurance, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60(5), 585-600. DOI: 10.1016/J.CHEMOSPHERE. 2005.02.065.CrossrefGoogle Scholar

  • 5. Headley, J.V. & McMartin, D.W. (2004). A review of the occurrence and fate of naphthenic acids in aquatic environments. J. Environ. Sci. Health A 39(8), 1989-2010. DOI: 10.1081/ESE-120039370.CrossrefGoogle Scholar

  • 6. Scott, A.C., MacKinnon, M.D. & Fedork, P.M. (2005). Naphthenic acids in Athabasca oil sands tailing waters are less biodegradable than commercial naphthenic acids. Environ. Sci. Technol. 39, 8388-8394. DOI: 10.1021/es051003k.CrossrefGoogle Scholar

  • 7. Mandal, P.C., Wahyudiono, Sasaki, M. & Goto, M. (2012). Reduction of total acid number (TAN) of naphthenic acid (NA) using supercritical water for reducing corrosion problems of oil refi neries. Fuel 94, 620-623. DOI: 10.1016/J.FUEL.2011.11.008.CrossrefGoogle Scholar

  • 8. Kane, R. & Cayard, M. (2002). A comprehensive study on naphthenic acid corrosion. Corrosion, NACE International, Houston, USA, Paper No. 02555, 1-16. http://www.icorr.net/wp-content/uploads/2011/01/napthenic_corrosion.pdfGoogle Scholar

  • 9. Shukri, N.M., Bakar, W.A., Jaafar, J. & Majid, Z.A. (2015). Removal of naphthenic acids from high acidity Korean crude oil utilizing catalytic deacidifi cation method. J. Ind. Eng. Chem. 28, 110-116. DOI:10.1016/J.JIEC.2015.02.005.CrossrefGoogle Scholar

  • 10. Wang, Y.Z., Zhong, D.L., Duan, H.L., Song, C.M., Han, X.T. & Ma, X.R. (2014). Removal of naphthenic acids from crude oils by catalytic decomposition using Mg-Al hydrotalcite/γ-Al2O3 as a catalyst. Fuel 134, 499-504. DOI: 10.1016/J.FUEL.2014.06.026.Web of ScienceCrossrefGoogle Scholar

  • 11. Rudolf, M.F. (1941). Process for removing naphthenic acids from hydrocarbon oils. U.S. Pat. No. US 2227811 A.Google Scholar

  • 12. Zhang, A., Ma, Q., Wang, K., Tang, Y. & Goddard, W.A. (2005). Improved processes to remove naphthenic acids. Final Technical Report, California Institute of Technology, Pasadena, CA, DE-FC26-02NT15383, 1-96. Retrieved December 30, 2015, from Research Gate. DOI: 10.2172/825290.CrossrefGoogle Scholar

  • 13. Wang, Y., Chu, Z., Qiu, B., Liu, C. & Zhang, Y. (2006). Removal of naphthenic acids from a vacuum fraction oil with an ammonia solution of ethylene glycol. Fuel 85(17-18), 2489-2493. DOI: 10.1016/J.FUEL.2006.04.032.CrossrefGoogle Scholar

  • 14. Ding, L., Rahimi, P., Hawkins, R., Bhatt, S. & Shi, Y. (2009). Naphthenic acid removal from heavy oils on alkaline earth-metal oxides and ZnO Catalyst. Appl. Catal. A-Gen. 371(1-2), 121-130. DOI: 10.1016/J.APCATA.2009.09.040.CrossrefGoogle Scholar

  • 15. Oh, H.Y., Park, J.H., Rhee, Y.W. & Kim, J.N. (2011). Decarboxylation of naphthenic acid using alkaline earth metal oxide. J. Ind. Eng. Chem. 17(4), 788-793. DOI: 10.1016/J.JIEC.2011.05.024.CrossrefWeb of ScienceGoogle Scholar

  • 16. Quiroga-Becerra, H., Mejia-Miranda, C., Laverde-Cataño, D., Hernandez-López, M. & Gomez-Sánchez, M. (2012). A kinetic study of esterifi cation of naphthenic acids from a Colombian heavy crude oil. CT&F - Ciencia, Tecnologia y Futuro 4(5), 21-32. Retrieved December 30, 2015, from http://www.scielo.org.co/scielo.php?pid=S0122-53832012000100002&script=sci_arttextGoogle Scholar

  • 17. Anderson, K., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D. & Wassell, D. (2013). Removal of naphthenic acids from crude oil using amino acid ionic liquids. Fuel 108, 715-722. DOI: 10.1016/J.FUEL.2013.02.030.CrossrefWeb of ScienceGoogle Scholar

  • 18. Dias, H.P., Gonçalves, G.R., Freitas, J.C., Gomes, A.O., de Castro, E.V. & Vaz, B.G. et al. (2015). Catalytic decarboxylation of naphthenic acids in crude oils. Fuel 158, 113-121. DOI: 10.1016/J.FUEL.2015.05.016.Web of ScienceCrossrefGoogle Scholar

  • 19. Shah, S.N., Chellappan, L.K., Gonfa, G., Mutalib, M.I.A., Pilus, R.B.M. & Bustam, M.A. (2016). Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids. Chem. Engine. J. 284, 487-493. DOI: 10.1021/ef502169q.CrossrefGoogle Scholar

  • 20. Kulawska, M., Sadlowski, J. & Skrzypek, J. (2005). Kinetics of the esterifi cation of maleic anhydride with octyl, decyl or dodecyl alcohol over Dowex catalyst. React. Kinet. Catal. Lett. 85(1), 51-56. DOI: 10.1007/s11144-005-0242-1.CrossrefGoogle Scholar

  • 21. Tesser, R., Di Serio, M., Guida, M., Natasi, M. & Santhacesaria, E. (2005). Kinetics of oleic acid esterifi cation with methanol in the presence of triglycerides. Ind. Eng. Chem. Res. 44(21), 7978-7982. DOI: 10.1021/ie050588o.CrossrefGoogle Scholar

  • 22. Mandal, P.C., Shiraishi, T., Wahyudiono, Sasaki, M. & Goto, M. (2011). Kinetics and reaction pathways for heptylbenzene decomposition in supercritical water. J. Chem. Eng. Jpn. 44(7), 486-493. DOI: 10.1252/jcej.10we296.CrossrefWeb of ScienceGoogle Scholar

  • 23. Calvert, J.G. et al. (1981). Formaldehyde and other aldehydes. National Academy Press, Washington D.C., 20-24Google Scholar

  • 24. Ginosar, M., Petkovic, L.M. & Guillen, D.P. (2011). Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid Daniel. Energy Fuels 25, 4138-4144. DOI: 10.1021/ef200639r.CrossrefGoogle Scholar

About the article

Published Online: 2016-10-13

Published in Print: 2016-09-01


Citation Information: Polish Journal of Chemical Technology, Volume 18, Issue 3, Pages 44–49, ISSN (Online) 1899-4741, DOI: https://doi.org/10.1515/pjct-2016-0047.

Export Citation

© by Pradip C. Mandal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Faisal Zafar, Pradip Chandra Mandal, Ku Zilati Bt Ku Shaari, and Zahoor Ullah
Polish Journal of Chemical Technology, 2017, Volume 19, Number 3

Comments (0)

Please log in or register to comment.
Log in