Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Open Access
See all formats and pricing
More options …
Volume 19, Issue 3


Potential influence of compounds released in degradation of phytates on the course of alcoholic fermentation of high gravity mashes – simulation with analogs of these compounds

Dawid Mikulski
  • Corresponding author
  • Kazimierz Wielki University, Department of Biotechnology, ul. Księcia Józefa Poniatowskiego 12, 85-671 Bydgoszcz, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra J. Rolbiecka
  • Kazimierz Wielki University, Department of Biotechnology, ul. Księcia Józefa Poniatowskiego 12, 85-671 Bydgoszcz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz R. Kłosowski
  • Kazimierz Wielki University, Department of Biotechnology, ul. Księcia Józefa Poniatowskiego 12, 85-671 Bydgoszcz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-10 | DOI: https://doi.org/10.1515/pjct-2017-0044


Aim of the study was to evaluate the effect of supplementation of high gravity media with mineral compounds and myo-inositol, at concentration which would be obtained as a result of degradation of phytates present in raw material during alcoholic fermentation. The process of alcoholic fermentation was conducted under laboratory conditions in a 72 h system at 37°C with the use of S. cerevisiae D-2 strain. Calcium chloride proved to be the most effective of all supplements tested. Final ethanol concentration increased by 1.2% v v−1 and the yield of process increased by ca. 7 dm−3 ethanol 100 kg−1 of starch in comparison with control. Selective supplementation with KH2PO4, ZnSO4 and MgSO4 also increased the ethanol concentration, but the effect was accompanied by a deterioration in composition of volatile products. The hydrolysis of phytate complexes with microbial phytases can be an alternative solution to supplementation of HG mashes presented in this work.

Keywords: high gravity alcoholic fermentation; mineral compounds; inositol


  • 1. Pereira, F.B., Guimarães, P.M.R., Teixeira, J.A. & Domingues, L. (2010). Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technol. 101, 7856–7863. DOI: 10.1016/j.biortech.2010.04.082.CrossrefGoogle Scholar

  • 2. Rees, E.M.R. & Stewart, G.G. (1997). The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high-gravity worts. J. I. Brewing 103, 287–291. DOI: 10.1002/j.2050-0416.1997.tb00958.x.CrossrefGoogle Scholar

  • 3. Kumar, V., Sinha, A.K., Makkar, H.P.S. & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 120, 945–959. DOI: 10.1016/j.foodchem.2009.11.052.CrossrefGoogle Scholar

  • 4. Dai, F., Wang, J., Zhang, S., Xu, Z. & Zhang, G. (2007). Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chem. 105, 606–611. DOI: 10.1016/j.foodchem.2007.04.019.CrossrefWeb of ScienceGoogle Scholar

  • 5. Mittal, A., Gupta, V., Singh, G., Yadav, A. & Aggarwal, N.K. (2013). Phytase: A boom in food industry. Octa. J. Biosci. 1(2), 158–169.Google Scholar

  • 6. Furakawa, K., Kitano, H., Mizoguchi, H. & Hara, S. (2004). Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J. Biosci. Bioeng. 98(2), 107–113. DOI: 10.1016/S1389-1723(04)70250-9.CrossrefGoogle Scholar

  • 7. Krause, E.L., Villa-García, M.J., Henry, S.A. & Walker, L.P. (2007). Determining the effects of inositol supplementation and the opi1 mutation on ethanol tolerance of Saccharomyces cerevisiae. Ind. Biotechnol. 3, 260–268. DOI: 10.1089/ind.2007.3.260.CrossrefGoogle Scholar

  • 8. Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D. & Zhang, K. (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biot. 85, 253–263. DOI: 10.1007/s00253-009-2223-1.Google Scholar

  • 9. Walker, G.M. (2000). Yeast: Physiology and Biotechnology. John Wiley & Sons Ltd, Chichester, England 56, 81–88.Google Scholar

  • 10. Vintila, T., Popa, N., Pop, G., Gergen, I. & Şumalan, R. (2015). Evaluation of fermentation parameters and yeasts selection for ethanol production from sweet sorghum juice. Rom. Biotech. Lett. 20(6), 11076–11083.Google Scholar

  • 11. De Nicola, D., Hall, N., Melville, S.G. & Walker, G.M. (2009). Influence of zinc on distiller’s yeast: cellular accumulation of zinc and impact on spirit congeners. J. I. Brewing 15(3), 265–271. DOI: 10.1002/j.2050-0416.2009.tb00379.x.CrossrefGoogle Scholar

  • 12. Zhao, X.Q., Xue, C., Ge, X.M., Yuan, W.J., Wang, J.Y. & Bai, F.W. (2009). Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 139, 55–60. DOI: 10.1016/j.jbiotec.2008.08.013.Web of ScienceCrossrefGoogle Scholar

  • 13. Kotarska, K., Czupryński, B. & Kłosowski, G. (2006). Effect of various activators on the course of alcoholic fermentation. J. Food Eng. 77, 965–971. DOI: 10.1016/j.jfoodeng.2005.08.041.CrossrefGoogle Scholar

  • 14. Kłosowski, G., Mikulski, D., Czupryński, B. & Kotarska, K. (2010). Characterisation of fermentation of high-gravity maize mashes with the application of pullulanase, proteolytic enzymes and enzymes degrading non-starch polysaccharides. J. Biosci. Bioeng. 109(5), 466–471. DOI: 10.1016/j.jbiosc.2009.10.024.Web of ScienceCrossrefGoogle Scholar

  • 15. BS EN ISO 10520:1998. Polish standard: Native starch. Determination of starch content. Ewers polarimetric method, ISBN: 0 580 30395 0.Google Scholar

  • 16. Park, H.R., Ahn, H.J., Kim, S.H., Lee, C.H., Byun, M.W. & Lee, G.W. (2006). Determination of the phytic acid levels in infant foods using different analytical methods. Food Control. 17, 727–732. DOI: 10.1016/j.foodcont.2005.05.007.CrossrefGoogle Scholar

  • 17. Cavell, A.J. (1955). The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agr. 6(8), 479–480. DOI: 10.1002/jsfa.2740060814.CrossrefGoogle Scholar

  • 18. Schneider, F. (1979). Sugar Analysis. Official and tentative methods recommended by the International Commission for Uniform Methods of Sugar Analysis (ICUMSA). ICUMSA, Peterborough, 41–73.Google Scholar

  • 19. PN-ISO 7954:1999P. Polish standard: Microbiology – General guidance for enumeration of yeasts and moulds – Colony count technique at 25 degrees C.Google Scholar

  • 20. Alfenore, S., Molina-Jouve, C., Guillouet, S.E., Uribelarrea, J.L., Goma, G. & Benbadis, L. (2002). Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl. Microbiol. Biotechnol. 60, 67–72. DOI: 10.1007/s00253-002-1092-7.CrossrefGoogle Scholar

  • 21. PN-A-79005-8: 1997. Polish standard: Yeast. Test methods – Determination of content of phosphorus.Google Scholar

  • 22. Kłosowski, G. & Mikulski, D. (2010). The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits. Bioresource Technol. 101, 9723–9727. DOI: 10.1016/j.biortech.2010.07.085.CrossrefWeb of ScienceGoogle Scholar

  • 23. Nabais, R.C., Sa-Correia, I., Viegas, C.A. & Novais, J.M. (1988). Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeast. Appl. Environ. Microb. 54(10), 2439–2446.Google Scholar

  • 24. Zeng, Y., Wei, N., Lou, M., L. Fu, L., Xiong, P. & Wang, H. (2010). Calcium chloride improve ethanol production in recombinant Zymomonas mobilis. Afr. J. Biotechnol. 9(455), 7687–7691.Google Scholar

  • 25. Ishmayana, S., Kennedy, U.J. & Learmonth, R.P. (2015). Preliminary evidence of inositol supplementation effect on cell growth, viability and plasma membrane fluidity of the yeast Saccharomyces cerevisiae. Procedia Chem. 17, 162–169. DOI: 10.1016/j.proche.2015.12.106.CrossrefGoogle Scholar

  • 26. Chi, Z., Kohlwein, S.D. & Paltauf, F. (1999). Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast. J. Ind. Microbiol. Biotechnol. 22, 58–63. DOI: 10.1038/sj.jim.2900603.CrossrefGoogle Scholar

  • 27. Roustan, J.L. & Sablayrolles, J.M. (2002). Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J. Biosci. Bioeng. 93(4), 367–375. DOI:10.1016/S1389-1723(02)80069-X.CrossrefGoogle Scholar

  • 28. Moreno-Arribas, M.V. & Polo, M.C. (2009). Wine Chemistry and Biochemistry. Springer Science+Business Media, B.V., Dordrecht, The Netherlands.CrossrefGoogle Scholar

  • 29. Li, J., Huang, W., Wang, X., Tang, T., Hua, Z. & Yan, G. (2010). Improvement of alcoholic fermentation by calcium ions under enological conditions involves the increment of plasma membrane H+-ATPase activity. World J. Microbiol. Biotechnol. 26, 1181–1186. DOI: 10.1007/s11274-009-0286-x.CrossrefGoogle Scholar

  • 30. Ribereau-Gayon, P., Glories, Y., Maujean, A. & Dubourdieu, D. (2006). Handbook of Enology, Vol. 1, The Microbiology of Wine and Vinifications. John Wiley & Sons, Ltd, Chichester, England.Google Scholar

About the article

Published Online: 2017-10-10

Published in Print: 2017-09-01

Citation Information: Polish Journal of Chemical Technology, Volume 19, Issue 3, Pages 27–34, ISSN (Online) 1899-4741, DOI: https://doi.org/10.1515/pjct-2017-0044.

Export Citation

© 2017 Dawid Mikulski et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in