Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
See all formats and pricing
More options …

Trends in Edible Vegetable Oils Analysis. Part A. Determination of Different Components of Edible Oils - a Review

Justyna Gromadzka
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Waldemar Wardencki
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-22 | DOI: https://doi.org/10.2478/v10222-011-0002-z

Trends in Edible Vegetable Oils Analysis. Part A. Determination of Different Components of Edible Oils - a Review

This review presents recent approaches applied to analysis of edible oils. In the last decade increasing attention has been paid to human diet concerning also edible oils and fats as a source of healthy energy. One of the major problems related to fats are oil oxidation reactions which decrease the nutritive value of edible oils. This paper describes methods developed to analyse different components of edible oils. The stress is put on methods used to assess oxidation stability of edible oils, their purity and approaches to determine their geographical origin.

Keywords: edible oils; quantitative and qualitative analysis; oil components; analytical techniques

  • van Aardt M., Duncan S. E., Long T. E., O'Keefe S. F., Marcy J. E., Sims S. R., Effect of antioxidants on oxidative stability of edible fats and oils: thermogravimetric analysis. J. Agric. Food Chem., 2004, 52, 587-591.CrossrefGoogle Scholar

  • Aparicio R., Aparicio-Ruýz R., Authentication of vegetable oils by chromatographic techniques. J. Chromatogr. A, 2000, 881, 93-104.Google Scholar

  • Bester E., Butinar B., Bucar-Miklavcic M., Golob T., Chemical changes in extra virgin olive oils from Slovenian Istra after thermal treatment. Food Chem. 2008, 108, 446-454.CrossrefGoogle Scholar

  • Bonoli M., Bendini A., Cerretani L., Lercker G., Toschi T. G., Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem., 2004, 52, 7026-7032.CrossrefGoogle Scholar

  • Camin F., Larcher R., Perini M., Bontempo L., Bertoldi D., Gagliano G., Nicolini G., Versini G., Characterisation of authentic Italian extra-virgin olive oils by isotope ratios of C, O and H and mineral composition. Food Chem., 2010, 118, 901-909.CrossrefGoogle Scholar

  • Capote F. P., Jimenez J. R., de Castro M. D. L., Sequential (step-by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles. Anal. Bioanal. Chem., 2007, 388, 1859-1865.Google Scholar

  • Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Lercker G., Fernandez-Gutierrez A., Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J. Agric. Food Chem., 2007, 55, 4771-4780.CrossrefGoogle Scholar

  • Caruso D., Colombo R., Patelli R., Giavarini F., Galli G., Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). J. Agric. Food Chem., 2000, 48, 1182-1185.CrossrefGoogle Scholar

  • Casas J. S., Gordillo C. De M., Bueno E. O., Exposito J. M., Mendoza M. F., Hierro T. A., Gonzalez L. G., Cano M. M., Characteristics of virgin olive oils from the Olive Zone of Extremadura (Spain), and an aproximation to their varietal origin. J. Am. Oil Chem. Soc., 2009, 86, 933-940.CrossrefGoogle Scholar

  • Catharino R. R., Haddad R., Cabrini L. G., Cunha I. B. S., Sawaya A. C. H. F., Eberlin M. N., Characterization of vegetable oils by electrospray ionization mass spectrometry fingerprinting: classification, quality, adulteration and aging. Anal. Chem., 2005, 77, 7429-7433.CrossrefPubMedGoogle Scholar

  • Cavalli J-F., Fernandez X., Lizzani-Cuvelier L., Loiseau A-M., Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem., 2004, 88, 151-157.CrossrefGoogle Scholar

  • Cecchi T., Passamonti P., Cecchi P., Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger. Food Chem., 2010, 120, 730-735.CrossrefGoogle Scholar

  • Cerretani L., Lerma-Garcia M. J., Herrero-Martinez J. M., Gallina-Toschi T., Simon-Alfonso E. F., Determination of tocopherols and tocotrienols in vegetable oils by nanoliquid chromatography with ultraviolet-visible detection using a silica monolithic column. J. Agric. Food Chem., 2010, 58, 757-761.CrossrefGoogle Scholar

  • Chiou R.Y-Y., Liu C-P., Hou C-J., Liu C-D., Comparison of fatty acid composition and oxidative stability of peanut oils prepared from spring and fall crops of peanuts. J. Agric. Food Chem., 1995, 43, 676-679.CrossrefGoogle Scholar

  • Christy A. A., Egeberg P. K., Ostensen E. T., Simultaneous quantitative determination of isolated trans fatty acids and conjugated linoleic acids in oils and fats by chemometric analysis of the infrared profiles. Vibrational Spectroscopy, 2003, 33, 37-48.CrossrefGoogle Scholar

  • Coppin E. A., Pike O. A., Oil stability index correlated with sensory determination of oxidative stability in light-exposed soybean oil. J. Am. Oil Chem. Soc., 2001, 78, 13-18.CrossrefGoogle Scholar

  • Daniels R. L., Kim H. J., Min D. B., Hydrogenation and interesterification effects on the oxidative stability and melting point of soybean oil. J. Agric. Food Chem., 2006, 54, 6011-6015.CrossrefGoogle Scholar

  • Deiana M., Rosa A., Cao C. F., Pirisi F. M., Bandino G., Dessi M. A., Novel approach to study oxidative stability of extra virgin olive oils: importance of α-tocopherol concentration. J. Agric. Food Chem., 2002, 50, 4342-4346.CrossrefGoogle Scholar

  • Drozdowski B., Lipidy. 2002, in: Chemia Żywności (ed. Z. E. Sikorski). WNT, Warszawa, pp. 171-228 (in Polish).Google Scholar

  • Drozdowski B., Lipidy. 1988, in: Chemia Żywności (eds. Z. E. Sikorski, B. Drozdowki, B. Samotus, M. Pałasiński). WNT, Warszawa, pp. 129-212 (in Polish).Google Scholar

  • Fu S., Segura-Carretero A., Arraez-Roman D., Menendez J. A., De La Torre A., Fernandez-Gutierrez A., Tentative characterization of novel phenolic compounds in extra virgin olive oils by rapid-resolution liquid chromatography coupled with mass spectrometry. J. Agric. Food Chem., 2009, 57, 11140-11147.CrossrefGoogle Scholar

  • Giuffrida F., Destaillats F., Egart M. H., Hug B., Golay P-A., Skibsted L. H., Dionisi F., Activity and thermal stability of antioxidants by differential scanning calorimetry and electron spin resonance spectroscopy. Food Chem. 2007, 101, 1108-1114.CrossrefGoogle Scholar

  • Gliszczyńska-Świgło A., Sikorska E., Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J. Chromatogr. A, 2004, 1048, 195-198.Google Scholar

  • Gomez-Alonso S., Salvador M. D., Fregapane G., Phenolic compounds profile of Cornicabra virgin olive oil. J. Agric. Food Chem., 2002, 50, 6812-6817.CrossrefGoogle Scholar

  • Gomez-Ariza J. L., Arias-Borrego A., Garcia-Barrera T., Beltran R., Comparative study of electrospray and photospray ionization sources coupled to quadrupole time-of-flight mass spectrometer for olive oil authentication. Talanta, 2006, 70, 859-869.CrossrefGoogle Scholar

  • Gromadzka J., Wardencki W., Lores M., LLompart M., Fernandez-Alvarez M., Lipińska K., Investigation of edible oils oxidation stability using photooxidation and SPME/GC method for determination of volatile compounds - preliminary investigation. Pol. J. Food Nutr. Sci., 2008, 58, 325-328.Google Scholar

  • Guo L., Xie M-Y., Yan A-P., Wan Y-Q., Wu Y-M., Simultaneous determination of five synthetic antioxidants in edible vegetable oil by GC-MS. Anal. Bioanal. Chem., 2006, 386, 1881-1887.Google Scholar

  • Gutierrez F., Fernandez J. L., Determinant parameters and components in the storage of virgin olive oil. Prediction of storage time beyond which the oil is no longer of "extra" quality. J. Agric. Food Chem., 2002, 50, 571-577.CrossrefGoogle Scholar

  • Hęś M., Korczak J., Nogala-Kałucka M., Jędrusek-Golińska A., Gramza A., Accelerated methods in durability research of stabilized rapeseed oil. Oilseed Crops, 2001, 22, 517-526.Google Scholar

  • Jeleń H. H., Mildner-Szkudlarz S., Jasińska I., Wąsowicz E., A headspace-SPME-MS method for monitoring rapeseed oil autoxidation. J. Am. Oil Chem. Soc., 2007. 84, 509-517.CrossrefGoogle Scholar

  • Jeleń H. H., Obuchowska M., Zawirska-Wojtasiak R., Wąsowicz E., Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem., 2000, 48, 2360-2367.CrossrefGoogle Scholar

  • Jimenez A., Beltran G., Aguilera M. P., Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils. J. Chromatogr. A, 2004, 1028, 321-324.Google Scholar

  • Kardash-Strochkova E., Tur'yan Y. I., Kuselman I., Redox-potentiometric determination of peroxide value in edible oils without titration. Talanta, 2001, 54, 411-416.CrossrefGoogle Scholar

  • Keszler A., Kriska T., Nemeth A., Mechanism of volatile compound production during storage of sunflower oil. J. Agric. Food Chem., 2000, 48, 5981-5985.CrossrefGoogle Scholar

  • Keszler A., Heberger K., Identification of volatile compounds in sunflower oil by headspace SPME and ion-trap GC/MS. J. High Resol. Chromatogr., 1998, 21, 368-370.Google Scholar

  • Keszler A., Heberger K., Gude M., Quantitative analysis of aliphatic aldehydes by headspace SPME sampling and ion-trap GC-MS. Chromatographia, 1998, 48, 127-132.CrossrefGoogle Scholar

  • Koprna R., Kolovrat O., Nerusil P., Comparison of accuracy of screening methods for determination of glucosinolate content in winter rape seed. Oilseed Crops, 2002, 23, 267-274.Google Scholar

  • Leclercq S., Reineccius G. A., Milo C., Effect of type of oil and addition of δ-tocopherol on model flavor compound stability during storage. J. Agric. Food Chem., 2007, 55, 9189-9194.CrossrefGoogle Scholar

  • Lee J. M., Chung H., Chang P-S., Lee J. H., Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Food Chem., 2007a, 103, 662-669.Google Scholar

  • Lee J. M., Kim D-H., Chang P-S., Lee J. H., Headspace-solid phase microextraction (HS-SPME) analysis of oxidized volatiles from free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chem., 2007b, 105, 414-420.CrossrefGoogle Scholar

  • Lerma-Garcia M. J., Concha-Herrera V., Herrero-Martinez J. M., Simo-Alfonso E. F., Classification of extra virgin olive oils produced at La Comunitat Valenciana according to their genetic variety using sterol profiles established by high-performance liquid chromatography with mass spectrometry detection. J. Agric. Food Chem. 2009, 57, 10512-10517.CrossrefGoogle Scholar

  • Lopez-Lopez A., Montano A., Ruiz-Mendez M. V., Garrido-Fernandez A., Sterols, fatty acids and triterpenic alcohols in commercial table olives. J. Am. Oil Chem. Soc., 2008, 85, 253-262.CrossrefGoogle Scholar

  • Małecka M., Non-glyceride fraction of edible oils as antioxidants. Tł. Jad., 1995, 30, 123-130 (in Polish).Google Scholar

  • Michulec M., Wardencki W., Development of headspace solidphase microextraction-gas chromatography method for the determination of solvent residues in edible oils and pharmaceuticals. J. Chromatogr. A, 2005, 1071, 119-124.Google Scholar

  • Michulec M., Wardencki W., Determination of solvents residues in vegetable oils and pharmaceuticals by headspace analysis and capillary gas chromatography. Chromatographia, 2004, 60, 273-277.Google Scholar

  • Mildner-Szkudlarz S., Jeleń H. H., Zawirska-Wojtasiak R., Wąsowicz E., Application of headspace-solid phase microextraction and multivariate analysis for plant oils differentiation. Food Chem., 2003, 83, 515-522.CrossrefGoogle Scholar

  • Miraliakbari H., Shahidi F., Oxidative stability of tree nut oils. J. Agric. Food Chem., 2008, 56(12), 4751-4759.Google Scholar

  • Mossoba M. M., Seiler A., Kramer J. K. G., Milosevic V., Milosevic M., Azizian H., Steinhart H., Nutrition labeling: rapid determination of total trans fats by using internal reflection infrared spectroscopy and a second derivative procedure. J. Am. Oil Chem. Soc., 2009, 86, 1037-1045.CrossrefGoogle Scholar

  • Naglic M., Smidovnik A., Use of capillary gas chromatography for determining the hydrogenation level of edible oils. J. Chromatogr. A, 1997, 767, 335-339.Google Scholar

  • Nogala-Kałucka M., Muśnicki Cz., Kupczyk B., Jasińska-Stępniak A., Bartkowiak-Fludra E., Siger A., Preliminary studies of tocochromanol content in seeds of open pollinated and hybrid varieties of winter rape. Oilseed Crops, 2005, 26, 561-570.Google Scholar

  • Noguera-Orti J. F., Villanueva-Camanas R. M., Raims-Ramos G., Direct injection of edible oils as microemulsions in a micellar mobile phase applied to the liquid chromatographic determination of synthetic antioxidants. Anal. Chim. Acta, 1999, 387, 127-134.Google Scholar

  • Nouros P. G., Georgiou C.A, Polissiou M. G., Direct parallel flow injection multichannel spectrophotometric determination of olive oil peroxide value. Anal. Chim. Acta, 1999, 389, 239-245.Google Scholar

  • Ocakoglu D., Tokatli F., Ozen B., Korel F., Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chem., 2009, 113, 401-410.CrossrefGoogle Scholar

  • Pellegrini N., Visioli F., Buratti S., Brighenti F., Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem., 2001, 49, 2532-2538.CrossrefGoogle Scholar

  • Płatek T., The method to assess edible oils and fats oxidation stability in Rancimat aparatus. Tł. Jad., 1995, 30, 25-34 (in Polish).Google Scholar

  • PN-90/R-66151. Industrial oilseed crops - Double zero rapeseed (Brasica napus var. oleifera) and oil-yielding rape (Brasica rapa var. oleifera) (in Polish).Google Scholar

  • PN-EN ISO 5509: 2001. Animal and vegetable fats and oils - Preparation of methyl esters of fatty acids. 58. PN-93/R-66166. Animal and vegetable fats and oils - Determination of glucosinolates content (in Polish).Google Scholar

  • Richards A., Wijesundera C., Salisbury P., Evaluation of oxidative stability of canola oils by headspace analysis. J. Am. Oil Chem. Soc., 2005, 82, 869-874.CrossrefGoogle Scholar

  • Romero M. P., Tovar M. J., Girona J., Motilva M. J., Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. Cv. Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem., 2002, 50, 5349-5354.CrossrefGoogle Scholar

  • Romero N., Robert P., Masson L., Ortiz J., Gonzalez K., Tapia K., Dobaganes C., Effect of α-tocopherol, α-tocotrienol and Rosa mosqueta shell extract on the performance of antioxidant-stripped canola oil (Brassica sp) at high temperature. Food Chem., 2007, 104, 383-389.CrossrefGoogle Scholar

  • Rotkiewicz D., Murawa D., Konopka I., Warmiński K., Glucosinolates of two varieties of spring rapeseed treated with herbicides. Oilseed Crops, 2000, 21, 271-277.Google Scholar

  • Rudzińska M., Muśnicki Cz., Wąsowicz E., Phytosterols and their oxidized derivatives in seeds of winter oilseed rape. Oilseed Crops, 2003, 24, 51-66.Google Scholar

  • Saad B., Wai W. T., Lim B. P., Saleh M. I., Flow injection determination of peroxide value in edible oils using triiodide detector. Anal. Chim. Acta, 2006, 565, 261-270.Google Scholar

  • Senorans F. J., Tabera J., Herraiz M., Rapid separation of free sterols in edible oils by on-line coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1996, 44, 3189-3192.CrossrefGoogle Scholar

  • Siger A., Nogala-Kałucka M., Lampart-Szczapa E., Hoffmann A., Phenolic compound contents in new rape varieties. Oilseed Crops, 2004, 25, 263-274.Google Scholar

  • Siger A., Nogala-Kałucka M., Lampart-Szczapa E., Hoffmann A., Antioxidant activity of phenolic compounds of selected cold-pressed and refined plant oils. Oilseed Crops, 2005, 26, 549-559.Google Scholar

  • Smith S. A., King R. E., Min D. B., Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem., 2007, 102, 1208-1213.CrossrefGoogle Scholar

  • Stevenson D. G., Eller F. J., Wang L., Jane J-L., Wang T., Inglett G. E., Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem., 2007, 55, 4005-4013.CrossrefGoogle Scholar

  • Stoewsand G. S., Bioactive Organosulfur Phytochemicals in Brassica oleracea Vegetables. Food Chem. Toxicol., 1995, 33, 537-543.CrossrefGoogle Scholar

  • Szukalska E., The chosen problems of fats oxidation. Tł. Jad., 2003, 38, 42-58 (in Polish).Google Scholar

  • Thomaidis N. S., Georgiou C. A., Edible oil analysis by flow injection. Laboratory Automation and Information Management, 1999, 34, 101-114.Google Scholar

  • Thomaidis N. S., Georgiou C. A., Direct parallel flow injection multichannel spectrophotometric determination of olive oil iodine value. Anal. Chim. Acta, 2000, 405, 239-245.Google Scholar

  • Tian K., Dasgupta P. K., Determination of oxidative stability of oils and fats. Anal. Chem., 1999, 71, 1692-1698.CrossrefPubMedGoogle Scholar

  • Troczyńska J., System myrosinase - glucosinolates — its character and functions in plant. Oilseed Crops, 2005, 26, 51-64.Google Scholar

  • Velasco J., Andersen M. L., Skibsted L. H., Electron spin resonance spin trapping for analysis of lipid oxidation in oils: inhibiting effect of the spin trap α-phenyl-N-tert-butylnitrone on lipid oxidation. J. Agric. Food Chem., 2005, 53, 1328-1336.CrossrefGoogle Scholar

  • Vichi S., Pizzale L., Conte L. S., Buxaderas S., Pez-Tamames E. L., Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: Characterization of virgin olive oils from two distinct geographical areas of northern Italy. J. Agric. Food Chem., 2003, 51, 6572-6577.CrossrefGoogle Scholar

  • Villen J., Blanch G. P., del Castillo M. L. R., Herraiz M., Rapid and simultaneous analysis of free sterols, tocopherols and squalene in edible oils by coupled reversed-phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1419-1422.CrossrefGoogle Scholar

  • Warner K., Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols. J. Agric. Food Chem., 2005, 53, 9906-9910.CrossrefGoogle Scholar

  • Webster L., Simpson P., Shanks A. M., Moffat C. F., The authentication of olive oil on the basis of hydrocarbon concentration and composition. Analyst, 2000, 125, 97-104.CrossrefGoogle Scholar

  • Wenzl T., Prettner E., Schweiger K., Wagner F. S., An improved method to discover adulteration of Styrian pumpkin seed oil. J. Biochem. Biophys. Methods, 2002, 53, 193-202.CrossrefGoogle Scholar

  • Yang M-H., Lin H-J., Choong Y-M., A rapid gas chromatographic method for direct determination of BHA, BHT and TBHQ in edible oils and fats. Food Res. Int., 2002, 35, 627-633.CrossrefGoogle Scholar

  • Zhang G., Ni Y., Churchill J., Kokot S., Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics. Talanta, 2006, 70, 293-300.PubMedCrossrefGoogle Scholar

About the article

Published Online: 2011-09-22

Published in Print: 2011-03-01

Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 61, Issue 1, Pages 33–43, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-011-0002-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Violeta Ivanova-Petropulos, Sasa Mitrev, Trajce Stafilov, Natalija Markova, Erich Leitner, Ernst Lankmayr, and Barbara Siegmund
Food Research International, 2015, Volume 77, Page 506
Sylwester Czaplicki, Dorota Ogrodowska, Ryszard Zadernowski, and Dorota Derewiaka
Polish Journal of Food and Nutrition Sciences, 2012, Volume 62, Number 4

Comments (0)

Please log in or register to comment.
Log in