Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Trends in Edible Vegetable Oils Analysis. Part B. Application of Different Analytical Techniques

Justyna Gromadzka
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Waldemar Wardencki
  • Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-22 | DOI: https://doi.org/10.2478/v10222-011-0009-5

Trends in Edible Vegetable Oils Analysis. Part B. Application of Different Analytical Techniques

This review describes recent developments in edible oils analysis by using various instrumental techniques. Different analytical methods are applied to assess oil stability but none of them is good enough. Therefore, there is still a need to develop new combined techniques to improve the quality control of edible oils. The paper describes various sample preparation techniques and instrumental methods developed to analyse different components in edible oils. Review Article

Keywords: edible oils; quantitative and qualitative analysis; oil components; analytical techniques

  • Al-Alawi A., van de Voort F. R., Sedman J., Ghetler A., Automated FTIR analysis of free fatty acids or moisture in edible oils. J. Assoc. Lab. Automat., 2006, 11, 23-29.Google Scholar

  • Alasalvar C., Shahidi F., Ohshima T., Wanasundara U., Yurttas H. C., Liyanapathirana C. M., Rodrigues F. B., Turkish Tombul hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability. J. Agric. Food Chem., 2003, 51, 3797-3805.CrossrefGoogle Scholar

  • Allouche Y., Jimenez A., Gaforio J. J., Uceda M., Beltran G., How heating affects extra virgin olive oil quality indexes and chemical composition. J. Agric. Food Chem., 2007, 55, 9646-9654.CrossrefGoogle Scholar

  • Alonso-Salces R. M., Heberger K., Holland M. V., Moreno-Rojas J. M., Mariani C., Bellan G., Reniero F., Guillou C., Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes. Food Chem., 2010, 118, 956-965.CrossrefGoogle Scholar

  • Angiuli M., Ferrari C., Lepori L., Matteoli E., Salvetti G., Tombari E., Banti A., Minnaja N., On testing quality and traceability of virgin olive oil by calorimetry. J. Therm. Anal. Calorim., 2006, 84, 105-112.Google Scholar

  • Armenta S., Garrigues S., de la Guardia M., Determination of edible oil parameters by near infrared spectrometry. Anal. Chim. Acta, 2007, 596, 330-337.Google Scholar

  • Arthur C., Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62, 2145-2148.CrossrefGoogle Scholar

  • Baeten V., Pierna J. A. F., Dardenne P., Meurens M., Garcia-Gonzalez D. L., Aparicio-Ruiz R., Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem., 2005, 53, 6201-6206.CrossrefGoogle Scholar

  • Baeten V., Dardenne P., Meurens M., Aparicio R., Interpretation of Fourier transform Raman spectra of the unsaponifiable matter in a selection of edible oils. J. Agric. Food Chem., 2001, 49, 5098-5107.CrossrefGoogle Scholar

  • Baeten V., Hourant P., Morales M. T., Aparicio R., Oil and fat classification by FT-Raman spectroscopy. J. Agric. Food Chem., 1998, 46, 2638-2646.CrossrefGoogle Scholar

  • Belsito E. L., Carbone C., di Gioia M. L., Leggio A., Liguori A., Perri F., Siciliano C., Viscomi M. C., Comparison of the volatile constituents in cold-pressed bergamot oil and a volatile oil isolated by vacuum distillation. J. Agric. Food Chem., 2007, 55, 7847-7851.CrossrefGoogle Scholar

  • Benitez-Sanchez P. L., Leon-Camacho M., Aparicio R., A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. Eur. Food Res. Technol., 2003, 218, 13-19.Google Scholar

  • Bester E., Butinar B., Bucar-Miklavcic M., Golob T., Chemical changes in extra virgin olive oils from Slovenian Istra after thermal treatment. Food Chem., 2008, 108, 446-454.Google Scholar

  • Blanch G. P., Villen J., Herraiz M., Rapid analysis of free erythrodiol and uvaol in olive oils by coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1027-1030.CrossrefGoogle Scholar

  • Bonoli M., Bendini A., Cerretani L., Lercker G., Toschi T. G., Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem., 2004, 52, 7026-7032.CrossrefGoogle Scholar

  • Byrdwell W. C., Neff W. E., List G. R., Triacylglycerol analysis of potential margarine base stocks by high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry and flame ionization detection. J. Agric. Food Chem., 2001, 49, 446-457.CrossrefGoogle Scholar

  • Camel V., Extraction techniques. Anal. Bioanal. Chem., 2002, 372, 39-40.Google Scholar

  • Capote F. P., Jimenez J. R., de Castro M. D. L., Sequential (step-by-step) detection, identification and quantitation of extra virgin olive oil adulteration by chemometric treatment of chromatographic profiles. Anal. Bioanal. Chem., 2007, 388, 1859-1865.Google Scholar

  • Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Lercker G., Fernandez-Gutierrez A., Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J. Agric. Food Chem., 2007, 55, 4771-4780.CrossrefGoogle Scholar

  • Casella I. G., Contursi M., Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection. J. Agric. Food Chem., 2004, 52, 5816-5821.CrossrefGoogle Scholar

  • Concha-Herrera V., Lerma-Garcia M. J., Herrero-Martinez J. M., Simo-Alfonso E. F., Prediction of the genetic variety of extra virgin olive oils produced at La Comunitat Valenciana, Spain, by Fourier transform infrared spectroscopy. J. Agric. Food Chem., 2009, 57, 9985-9989.CrossrefGoogle Scholar

  • Cortes J. M., Sanchez R., Villen J., Vazquez A., Analysis of un-saponifiable compounds of edible oils by automated on-line coupling reversed-phase liquid chromatography-gas chromatography using the through oven transfer adsorption desorption interface. J. Agric. Food Chem., 2006, 54, 6963-6968.CrossrefGoogle Scholar

  • Destaillats F., Cruz-Hernandez C., Fast analysis by gas-liquid chromatography. Perspective on the resolution of complex fatty acid compositions. J. Chromatogr. A, 2007, 1169, 175-178.Google Scholar

  • Doleschall F., Kemeny Z., Recseg K., Kovari K., Monitoring of lipid degradation products by solid-phase microextraction. J. Microcolumn Sep., 2001, 13, 215-220.CrossrefGoogle Scholar

  • Doleschall F., Recseg K., Kemeny Z., Kovari K., Comparison of differently coated SPME fibres applied for monitoring volatile substances in vegetable oils. Eur. J. Lipid Sci. Technol., 2003, 105, 333-338.CrossrefGoogle Scholar

  • Ferrari C., Angiuli M., Tombari E., Righetti M. C., Matteoli E., Salvetti G., Promoting calorimetry for olive oil authentication. Thermochim. Acta, 2007, 459, 58-63.Google Scholar

  • Giacometti J., Milosevic A., Milin C., Gas chromatographic determination of fatty acids contained in different lipid classes after their separation by solid-phase extraction. J. Chromatogr. A, 2002, 976, 47-54.Google Scholar

  • Gliszczyńska-Świgło A., Sikorska E., Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J. Chromatogr. A, 2004, 1048, 195-198.Google Scholar

  • Gomes T., Caponio F., Effort to improve the quantitative determination of oxidation and hydrolysis compound classes in edible vegetable oils. J. Chromatogr. A, 1999, 844, 77-86.Google Scholar

  • Gomez-Alonso S., Salvador M. D., Fregapane G., Phenolic compounds profile of Cornicabra virgin olive oil. J. Agric. Food Chem., 2002, 50, 6812-6817.CrossrefGoogle Scholar

  • Guillen M. D., Cabo N., Usefulness of the frequency data of the fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food Chem., 1999, 47, 709-719.CrossrefGoogle Scholar

  • Gurdeniz G., Ozen B., Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem., 2009, 116, 519-525Google Scholar

  • Haddad R., Milagre H. M. S., Catharino R. R., Eberlin M. N., Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography. Anal. Chem., 2008, 80, 2744-2750.PubMedCrossrefGoogle Scholar

  • Haiyan Z., Bedgood Jr. D. R., Bishop A. G., Prenzler P. D., Robards K. R., Endogenous biphenol, fatty acid and volatile profiles of selected oils. Food Chem., 2007, 100, 1544-1551.CrossrefGoogle Scholar

  • Hendl O., Howell J. A., Lowery J., Jones W., A rapid and simple method for determination of iodine values using derivative Fourier transform infrared measurements. Anal. Chim. Acta, 2001, 427, 75-81.Google Scholar

  • Hidalgo F. J., Zamora R., Edible oil analysis by high-resolution nuclear magnetic resonance spectroscopy: recent advances and future perspectives. Trends Food Sci. Technol., 2003, 14, 499-506.Google Scholar

  • Hidalgo F. J., Gomez G., Navarro J. L., Zamora R., Oil stability prediction by high-resolution 13C nuclear magnetic resonance spectroscopy. J. Agric. Food Chem., 2002, 50, 5825-5831.CrossrefGoogle Scholar

  • Hilali M., Charrouf Z., El Aziz Soulhi A., Hachimi L., Guillaume D., Detection of argan oil adulteration using quantitative campesterol GC-analysis. J. Am. Oil Chem. Soc., 2007, 84, 761-764.CrossrefGoogle Scholar

  • Janssen H-G., Boers W., Steenbergen H., Horsten R., Floter E., Comprehensive two-dimensional liquid chromatography x gas chromatography: Evaluation of the applicability for the analysis of edible oils and fats. J. Chromatogr. A, 2003, 1000, 385-400.Google Scholar

  • Jeleń H. H., Mildner-Szkudlarz S., Jasińska I., Wąsowicz E., A headspace-SPME-MS method for monitoring rapeseed oil autoxidation. J. Am. Oil Chem. Soc., 2007. 84, 509-517.CrossrefGoogle Scholar

  • Jeleń H. H., Obuchowska M., Zawirska-Wojtasiak R., Wąsowicz E., Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agric. Food Chem., 2000, 48, 2360-2367.CrossrefGoogle Scholar

  • Jeleń H. H., Wlazły K., Wąsowicz E., Kamiński E., Solid-phase microextraction for the analysis of some alcohols and esters in beer: comparison with static headspace method. J. Agric. Food Chem., 1998, 46, 1469-1473.Google Scholar

  • Johnson G. L., Machado R. M., Freidl K. G., Achenbach M. L., Clark P. J., Reidy S. K., Evaluation of Raman spectroscopy for determining cis and trans isomers in partially hydrogenated soybean oil. Organic Proc. Res. Develop., 2002, 6, 637-644.CrossrefGoogle Scholar

  • Kalua C. M., Bedgood D. R. Jr., Prenzler P. D., Development of a headspace solid phase microextraction-gas chromatography method for monitoring volatile compounds in extended time-course experiments of olive oil. Anal. Chim. Acta, 2006, 556, 407-414.Google Scholar

  • Kanavouras A., Kiritsakis A., Hernandez R. J., Comparative study on volatile analysis of extra virgin olive oil by dynamic headspace and solid phase micro-extraction. Food Chem., 2005, 90, 69-79.CrossrefGoogle Scholar

  • Kataoka H., Lord H. L., Pawliszyn J., Applications of solid-phase microextraction in food analysis. J. Chromatogr. A, 2000, 880, 35-62.Google Scholar

  • Kaufman M., Wiesman Z., Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J. Agric. Food Chem., 2007, 55, 10405-10413.CrossrefGoogle Scholar

  • Kawai Y., Takeda S., Terao J., Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography-mass spectrometry. Chem. Res. Toxicol., 2007, 20, 99-107PubMedCrossrefGoogle Scholar

  • Khallouki F., Mannica L., Viel S., Owen R. W., Thermal stability and long-chain fatty acid positional distribution on glycerol of argan oil. Food Chem., 2008, 110, 57-61.Google Scholar

  • Kodali D. R., Oxidative stability measurement of high-stability oils by pressure differential scanning calorimeter (PDSC). J. Agric. Food Chem., 2005, 53, 7649-7653.CrossrefGoogle Scholar

  • Lankmayr E., Mocak J., Seret K., Balla B., Wenzl T., Bandoniene D., Gfrerer M., Wagner S., Chemometrical classification of pumpkin seed oils using UV-Vis, NIR and FTIR spectra. J. Biochem. Biophys. Methods, 2004, 61, 95-106.Google Scholar

  • Lerma-Garcia M. J., Ramis-Ramos G., Herrero-Martinez J. M., Simon-Alfonso E. F., Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem., 2010, 118, 78-83.CrossrefGoogle Scholar

  • Liescheski P. B., Supercritical fluid extraction coupled to infrared spectroscopy for iodine number analysis of edible oils. J. Agric. Food Chem., 1996, 44, 823-828.CrossrefGoogle Scholar

  • Lisa M., Holcapek M., Rezanka T., Kabatova N., High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Δ5-polyenoic fatty acids in triacylglycerols from conifer seed oils. J. Chromatogr. A, 2007, 1146, 67-77.Google Scholar

  • Lizzani-Cuvelier L., Zarrouk M., Profiles of volatile compounds from some monovarietal Tunisian virgin olive oils. Comparison with French PDO. Food Chem., 2007, 103, 467-476.Google Scholar

  • van Loon W. A. M., Linssen J. P. H., Legger A., Posthumus M. A., Voragen A. G. J., Identification and olfactometry of French fries flavor extracted at mouth conditions. Food Chem., 2005, 90, 417-425.Google Scholar

  • Lopez-Lopez A., Montano A., Ruiz-Mendez M. V., Garrido-Fernandez A., Sterols, fatty acids and triterpenic alcohols in commercial table olives. J. Am. Oil Chem. Soc., 2008, 85, 253-262.CrossrefGoogle Scholar

  • Lorenzo I. M., Pavon J. L. P., Laespada M. E. F., Pinto C. G., Cordero B. M., Detection of adulterants in olive oil by headspace-mass spectrometry. J. Chromatogr. A, 2002a, 945, 221-230.Google Scholar

  • Lorenzo I. M., Pavon J. L. P., Laespada M. E. F., Pinto C. G., Cordero B. M., Henriques L. R., Peres M. F., Simoes M. P., Lopes P. S., Application of headspace-mass spectrometry for differentiating sources of olive oil. Anal. Bioanal. Chem., 2002b, 374, 1205-1211.Google Scholar

  • Mancebo-Campos V., Salvador M. D., Fregapane G., Comparative study of virgin olive oil behavior under Rancimat accelerated oxidation conditions and long-term room temperature storage. J. Agric. Food Chem., 2007, 55, 8231-8236.CrossrefGoogle Scholar

  • Mannina L., D'Imperio M., Capitani D., Rezzi S., Guillou C., Mavromoustakos T., Vilchez M. D. M., Fernandez A. H., Thomas F., Aparicio R., 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. J. Agric. Food Chem., 2009, 57, 11550-11556.Google Scholar

  • del Mar Caja M., del Castillo M. L. R., Alvarez R. M., Herraiz M., Blanch G. P., Analysis of volatile compounds in edible oils using simultaneous distillation-solvent extraction and direct coupling of liquid chromatography with gas chromatography. Eur. Food Res. Technol., 2000, 211, 45-51.Google Scholar

  • Mateos R., Trujillo M., Perez-Camino M. C., Moreda W., Cert A., Relationship between oxidative stability, triacylglycerol composition and antioxidant content in olive oil matrices. J. Agric. Food Chem., 2005, 53, 5766-5771.CrossrefGoogle Scholar

  • Michulec M., Wardencki W., Validation of SPME-GC and HS-GC procedures for the determination of selected solvent residues in edible oil matrices. Accred. Qual. Assur., 2007, 12, 94-104.CrossrefGoogle Scholar

  • Michulec M., Wardencki W., Development of headspace solid-phase microextraction-gas chromatography method for the determination of solvent residues in edible oils and pharmaceuticals. J. Chromatogr. A, 2005, 1071, 119-124.Google Scholar

  • Michulec M., Wardencki W., Determination of solvents residues in vegetable oils and pharmaceuticals by headspace analysis and capillary gas chromatography. Chromatographia, 2004, 60, 273-277.Google Scholar

  • Mildner-Szkudlarz S., Jeleń H. H., Zawirska-Wojtasiak R., Wąsowicz E., Application of headspace—solid phase microextraction and multivariate analysis for plant oils differentiation. Food Chem., 2003, 83, 515-522.Google Scholar

  • Miraliakbari H., Shahidi F., Oxidative stability of tree nut oils. J. Agric. Food Chem., 2008, 56, 4751-4759.CrossrefGoogle Scholar

  • Moreno M. C. M. M., Olivares D. M., Lopez F. J. A., Adelantado J. V. G., Reig F. B., Determination of unsaturation grade and trans isomers generated during thermal oxidation of edible oils and fats by FTIR. J. Molec. Struc., 1999, 482-483, 551-556.Google Scholar

  • Muik B., Lendl B., Molina-Diaz A., Valcarcel M., Ayora-Canada M. J., Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal. Chim. Acta, 2007, 593, 54-67.Google Scholar

  • Naglic M., Smidovnik A., Use of capillary gas chromatography for determining the hydrogenation level of edible oils. J. Chromatogr. A, 1997, 767, 335-339.Google Scholar

  • Noguera-Orti J. F., Villanueva-Camanas R. M., Raims-Ramos G., Direct injection of edible oils as microemulsions in a micellar mobile phase applied to the liquid chromatographic determination of synthetic antioxidants. Anal. Chim. Acta, 1999, 387, 127-134.Google Scholar

  • Pacheco-Palencia L. A., Mertens-Talcott S., Talcott S. T., Chemical composition, antioxidant properties and thermal stability of a phytochemical enriched oil from acai (Euterpe oleracea Mart.). J. Agric. Food Chem., 2008, 56, 4631-4636.CrossrefGoogle Scholar

  • Pawliszyn J., Sample Preparation: Quo Vadis? Anal. Chem., 2003, 75, 2543-2558.Google Scholar

  • Pawliszyn J., Solid Phase Microextraction: Theory and Practice. 1997, first edition, Wiley-VCH, New York, pp. 43-192.Google Scholar

  • Pellegrini N., Visioli F., Buratti S., Brighenti F., Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem., 2001, 49, 2532-2538.CrossrefGoogle Scholar

  • Pereira J. A., Casal S., Bento A., Oliveira M. B. P. P., Influence of olive storage period on oil quality of three Portuguese cultivars of Olea europea cobrancosa, madural and verdeal transmontana. J. Agric. Food Chem., 2002, 50, 6335-6340.CrossrefGoogle Scholar

  • Plutowska B., Wardencki W., Aromagrams-Aromatic profiles in the appreciation of food quality. Food Chem., 2007, 101, 845-872.CrossrefGoogle Scholar

  • Povolo M, Contarini G., Comparison of solid-phase microextraction and purge-and-trap methods for the analysis of the volatile fraction of butter. J. Chromatogr. A, 2003, 985, 117-125.Google Scholar

  • Purcaro G., Morrisom P., Moret S., Conte L. S., Marriott P. J., Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A, 2007, 1161, 284-291.Google Scholar

  • Romanik G., Gilgenast E., Przyjazny A., Kamiński M., Techniques of preparing plant material for chromatographic separation and analysis. J. Biochem. Biophys. Methods, 2007, 70, 253-261.CrossrefGoogle Scholar

  • Romero M. P., Tovar M. J., Girona J., Motilva M. J., Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. cv. Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem., 2002, 50, 5349-5354.CrossrefGoogle Scholar

  • Ruiz-Mendez M. V., Dobarganes M. C., Combination of chromatographic techniques for analysis of complex deodorizer distillates from an edible oil refining process. Food Chem., 2007, 103, 1502-1507.Google Scholar

  • Santos J. C. O., Santos M. G. O., Dantas J. P., Conceicao M. M., Athaide-Filho P. F., Souza A. G., Comparative study of specific heat capacities of some vegetable oils obtained by DSC and microwave oven. J. Therm. Anal. Calorim., 2005, 79, 283-287.CrossrefGoogle Scholar

  • Senorans F. J., Villen J., Tabera J., Herraiz M., Simplex optimization of the direct analysis of free sterols in sunflower oil by on-line coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1022-1026.CrossrefGoogle Scholar

  • Senorans F. J., Tabera J., Herraiz M., Rapid separation of free sterols in edible oils by on-line coupled reversed phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1996, 44, 3189-3192.CrossrefGoogle Scholar

  • Shaw A. D., di Kamillo A., Vlahov G., Jones A., Bianchi G., Rowland J., Kell D. B., Discrimination of variety and region of origin of extra virgin olive oils using 13C NMR and multivariate calibration with variable reduction. Anal. Chim. Acta, 1997, 348, 357-374.Google Scholar

  • Simon P., Kolman L., DSC study of oxidation induction periods. J. Therm. Anal. Calorim., 2001, 64, 813-820.CrossrefGoogle Scholar

  • Smejkalova D., Piccolo A., High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chem., 2010, 118, 153-158.Google Scholar

  • Smith S. A., King R. E., Min D. B., Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem., 2007, 102, 1208-1213.CrossrefGoogle Scholar

  • Snow N. H., Snack G. C., Head-space analysis in modern gas chromatography. Trends Anal. Chem., 2002, 21, 608-617.CrossrefGoogle Scholar

  • Stashenko E. E., Martinez J. R., Derivatization and solid-phase microextraction. Trends Anal. Chem., 2004, 23, 553-561.Google Scholar

  • Sullivan J. C., Budge S. M., St-Onge M., Determining ethyl esters in fish oil with solid phase microextraction and GC-MS. J. Am. Oil Chem. Soc., 2009, 86, 743-748.CrossrefGoogle Scholar

  • Szłyk E., Szydłowska-Czerniak A., Kowalczyk-Marzec A., NIR spectroscopy and partial least-squares regression for determination of natural α-tocopherol in vegetable oils. J. Agric. Food Chem., 2005, 53, 6980-6987.CrossrefGoogle Scholar

  • Tan C. P., Che Man Y. B., Differential scanning calorimetric analysis for monitoring the oxidation of heated oils. Food Chem., 1999, 67, 177-184.Google Scholar

  • Tong P., Kaługa Y., Khoo C. S., Liquid chromatographic-mass spectrometric method for detection of estrogen in commercial oils and in fruit seed oils. J. Food Comp. Anal., 2006, 19, 150-156.CrossrefGoogle Scholar

  • Vigli G., Philippidis A., Spyros A., Dais P., Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. J. Agric. Food Chem., 2003, 51, 5715-5722.Google Scholar

  • Villen J., Blanch G. P., del Castillo M. L. R., Herraiz M., Rapid and simultaneous analysis of free sterols, tocopherols and squalene in edible oils by coupled reversed-phase liquid chromatography-gas chromatography. J. Agric. Food Chem., 1998, 46, 1419-1422.CrossrefGoogle Scholar

  • van de Voort F. R., Sedman J., Sherazi S. T. H., Correcting for underlying absorption interferences in Fourier transform infrared trans analysis of edible oils using two-dimensional correlation techniques. J. Agric. Food Chem., 2008, 56, 1532-1537.Google Scholar

  • Wang L., Lee F. S. C., Wang X., He Y., Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chem., 2006, 95, 529-536.CrossrefGoogle Scholar

  • Wardencki W., Michulec M., Curyło J., A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int. J. Food Sci. Technol., 2004, 39, 703-717.Google Scholar

  • Warner K., Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols. J. Agric. Food Chem., 2005, 53, 9906-9910.CrossrefGoogle Scholar

  • Yang H., Irudayaraj J., Paradkar M. M., Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem., 2005, 93, 25-32.CrossrefGoogle Scholar

  • Yu X., van de Voort F. R., Sedman J., Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique. Talanta, 2007, 74, 241-246.Google Scholar

  • Zamora R., Alba V., Hidalgo F. J., Use of high-resolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oils. J. Am. Oil Chem. Soc., 2001, 78, 89-94.Google Scholar

  • Zhang X., Julien-David D., Miesch M., Raul F., Geoffroy P., Aoude-Werner D., Ennahar S., Marchioni E., Quantitative analysis of β-sitosterol oxides induced in vegetable oils by natural sunlight, artificially generated light and irradiation. J. Agric. Food Chem., 2006, 54, 5410-5415.CrossrefGoogle Scholar

  • Zunin P., Boggia R., Lanteri S., Leardi R., De Andreis R., Evangelisti F., Direct thermal extraction and gas chromatographic-mass spectrometric determination of volatile compounds of extra-virgin olive oils. J. Chromatogr. A, 2004, 1023, 271-276.Google Scholar

About the article


Published Online: 2011-09-22

Published in Print: 2011-06-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-011-0009-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. S. Sarpal, Samantha R. Silva, Paulo R. M. Silva, Thays V. Monteiro, Júlia Itacolomy, Valnei S. Cunha, and Romeu J. Daroda
Energy & Fuels, 2015, Volume 29, Number 12, Page 7956
[2]
Sylwester Czaplicki, Dorota Ogrodowska, Ryszard Zadernowski, and Dorota Derewiaka
Polish Journal of Food and Nutrition Sciences, 2012, Volume 62, Number 4

Comments (0)

Please log in or register to comment.
Log in