Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Freeze-Drying - Application in Food Processing and Biotechnology - A Review

Agnieszka Ciurzyńska
  • Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland
/ Andrzej Lenart
  • Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland
Published Online: 2011-09-22 | DOI: https://doi.org/10.2478/v10222-011-0017-5

Freeze-Drying - Application in Food Processing and Biotechnology - A Review

Freeze-drying is a method of removing water by sublimation of ice crystals from frozen material. Suitable parameters of process application allow us to obtain best quality products compared to products dried with traditional methods. Very good physical and chemical properties of food and biotechnological products make this method the best for drying exclusive products. On the domestic market there is a large selection of different types of freeze-dried products, and there is still increasing interest of consumers in these products. A high cost of the freeze-drying still limits the wide-scale application in the food industry. Equipment innovation and pretreatment of raw material can reduce the time and energy needed for this process.

Keywords: freeze-drying; food industry; pharmaceutical products

  • Abdelwahed W., Degobert G., Stainmesse S., Fessi H., Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58, 1688-1713.Google Scholar

  • Babic J., Cantalejo M. J., Arroqui C., The effect of freeze-drying process parameters on Broiler chicken breast meat. Food Sci. Technol., 2009, 42, 1325-1334.Google Scholar

  • Bird K., Palatability of freeze-dried meats. Food Technol., 1965, 19, 55.Google Scholar

  • Branger T., Bobin C., Iroulart M-G., Lepy M-C., Le Garreres I., Morelli S., Lacour D., Plagnard J., Comparative sturdy of two drying techniques used in radioactive source preparation: Freeze-drying and evaporation using hot dry nitrogen jets. Appl. Radiat. Isot., 2008, 66, 685-690.Google Scholar

  • Chan E. W. C., Lim Y. Y., Wong S. K., Lim K. K., Tan S. P., Lianto F. S., Yong M. Y., Effect of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem., 2009, 113, 166-172.Google Scholar

  • Chirife J., Buera M. P., A critical review of some nonequilibrium situations and glass transitions on water activity values of foods in the microbiological growth range. J. Food Eng., 1995, 25, 531-552.Google Scholar

  • Ciurzyńska A., Lenart A., Colour changes of freeze-dried strawberries osmotically dehydrated before drying. 2009, Food Technology Operations new vistas, pp. 217-223, Monograph.Google Scholar

  • Ciurzyńska A., Lenart A., Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries. J. Food Eng., 2010, 97, 267-274.Google Scholar

  • Cui J. X., Li C. L., Deng Y. J., Wang Y. L., Wang W., Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent system. Int. J. Pharm., 2006, 312, 131-136.Google Scholar

  • De Sanoit J., Leprince B., Bobin Ch., Bouchard J., Freeze-drying applied to radioactive source preparation. Appl. Radiat. Isot., 2004, 61, 1391-1395.Google Scholar

  • Di Matteo P., Donsi G., Ferrari G., The role of heat and mass transfer phenomena in atmospheric freeze-drying of foods in a fluidised bed. J. Food Eng., 2003, 59, 267-275.Google Scholar

  • Dincer I., One energetic, exergetic and environmental aspects of drying systems. Int. J. Energy Res., 2002, 26, 717-727.CrossrefGoogle Scholar

  • Dincer I., Refrigeration Systems and Applications. 2003, John Wiley & Sons, England, pp. 534-536.Google Scholar

  • Flink J. M., Energy analysis in dehydration processes. Food Technol., 1977, 31, 76-83.Google Scholar

  • Franks F., Freeze-dried blood: reality or confidence trick? Cryo-Letters, 1996, 17, 1.Google Scholar

  • Franks F., Freeze-drying of bioproducts: Putting principles into practice. Eur. J. Pharm. Biopharm., 1998, 45, 221-229.Google Scholar

  • Franks F., Freeze-drying/lyophilisation of pharmaceutical and biological products. Cryobiology, 2000, 40, 381-382.Google Scholar

  • Gawałek J., Effect of convection and freeze drying conditions on the quality of dried carrot roots. Inż. Roln., 2005, 71, 119-127 (in Polish).Google Scholar

  • George J. P., Datta A. K., Development and validation of heat and mass transfer models for freeze-drying of vegetables slices. J. Food Eng., 2002, 52, 89-93.Google Scholar

  • Hammami C., Rene F., Determination of freeze-drying process variables for strawberries. J. Food Eng., 1997, 32, 133-154.Google Scholar

  • Hammami C., Rene F., Marin M., Process-quality optimization of the vacuum freeze-drying of apple slices by the response surface method. Int. J. Food Sci. Technol., 1999, 34, 145-160.Google Scholar

  • Huang L., Zhang M., Wei-qiang Y., Mujumdar A. S., Sun D., Effect of coating on post-drying of freeze-dried strawberry pieces. J. Food Eng., 2009, 92, 107-111.Google Scholar

  • Jaekel T., Dautel K., Ternes W., Preserving functional properties of hen's egg yolk during freeze-drying. J. Food Eng., 2008, 87, 522-526.Google Scholar

  • Kreilgaard L., Frokjaer S., Flink J. M., Randolph T. W., Carpenter J. F., Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solids. Arch. Biochem. Bioph., 1998, 360, 1, 121-134.Google Scholar

  • Krokida M. K., Tsami E., Maroulis Z. B., Kinetics on color changes during drying of some fruits and vegetables. Drying Technol., 1998, 16, 667-685.Google Scholar

  • Kusakabe H., Kamiguchi Y., Chromosomal integrity of freeze-dried mouse spermatozoa after 137Cs gamma-ray irradiation. Mutat. Res., 2004, 556, 163-168.Google Scholar

  • Lee S. M., Hwang T. R., Song Y. S., Lee J. W., Epoxy-phenolic novolac-montmorillonite hybrid nanocomposites: Novel synthesis methods and their characteristics. Polymer Eng. Sci., 2004, 44, 1170-1177.Google Scholar

  • Lewicki P. P., Lenart A., Osmotic dehydration of fruits and vegetables. 2007, in: Handbook of Industrial Drying. 3rd edit. (ed. Arun S. Mujumdar). Taylor & Francis Group, New York, pp. 665-688.Google Scholar

  • Lin Y-P. Tsen J-H., King A-E., Effect of far-infrared radiation on the freeze-drying of sweet potato. J. Food. Eng., 2005, 68, 249-255.Google Scholar

  • Liu Y., Zhao Y., Feng X., Exergy analysis for a freeze-drying process. Appl. Thermal Eng., 2008, 28, 675-690.Google Scholar

  • Long-yuan Li, Numerical simulation of mass transfer during the osmotic dehydration of biological tissues. Comp. Mater. Sci., 2006, 35, 75-83.Google Scholar

  • Marques L. G., Ferreira M. C., Freire J. T., Freeze-drying acerola (Malpighia glabra L.). Chem. Eng. Process., 2007, 46, 451-457.Google Scholar

  • Nowak D., Lewicki P. P., Infrared drying of apple slices. Inn. Food Sci. Emer. Technol., 2004, 5, 353-360.Google Scholar

  • Nsonzi F., Ramaswamy H. S., Osmotic dehydration kinetics of blueberries. Drying Technol., 1998, 16, 725-741.Google Scholar

  • Oesterle J., Frank F., Auffret T., The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying. Pharm. Dev. Technol., 1998, 3, 175-183.Google Scholar

  • Oguchi T., Yonemochi E., Yamamoto K., Freeze-drying of drugadditive binary system. IV. Effects of saccharide addition on the crystallization of cefazolin sodium in frozen aqueous solution. Pharm. Acta Helv., 1995, 70, 113-116.Google Scholar

  • Pacuła A., Bielańska E., Gaweł A., Baranowski K., Serwicka E. M., Textural effects in powdered montmorillonite induced by freeze-drying and ultrasound pretreatment. Appl. Clay Sci., 2006, 32, 64-72.Google Scholar

  • Palmfeldt J., Hahn-Hägerdal B., Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying. Int. J. Food Microbiol., 2000, 55, 235-238.Google Scholar

  • Pan Z., Shih C., McHugh T. H., Hirschberg E., Study of banana dehydration using sequential infrared radiation heating and freeze-drying. LWT-Food Sci. Technol., 2008, 41, 1944-1951.Google Scholar

  • Pikal M. J., Freeze-drying of proteins. Biopharmaceutics, 1991, 3, 18-29.Google Scholar

  • Ratti C., Hot air and freeze-drying of high-value foods: a review. J. Food Eng., 2001, 49, 311-319.Google Scholar

  • Rey L., May J., Freeze-drying/Lyophilization of pharmaceutical and biological products. Book reviews. Eur. J. Pharm. Biopharm., 2001, 51, 163-164.Google Scholar

  • Rindler V., Lüneberger S., Schwindke P., Heschel I., Rau G., Freeze-drying of red blood cells at ultra-low temperatures. Cryobiology, 1999, 38, 2-15.Google Scholar

  • Rindler V., Schwindke P., Heschel I., Rau G., Technical description of a low-temperature freeze-drying device. Int. J. Refrig., 1998, 7, 535-541Google Scholar

  • Sablani S. S., Rahman M. S., Al.-Kuseibi M. K., Al-Habsi N. A., Al-Belushi R. H., Al-Marhubi I., Al-Amri I. S., Influence of shelf temperature on pore formation in garlic during freeze-drying. J. Food Eng., 2007, 80, 68-79.Google Scholar

  • Sereno A. M., Hubinger M. D., Comesana J. F., Correa A., Prediction of water activity of osmotic solution. J. Food Eng., 2001, 49, 103-114.Google Scholar

  • Shahgaldian P., Gualbert J., Aissa K., Coleman A. W., A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 2003, 55, 181-184.Google Scholar

  • Shih C., Pan Z., Mc Hug, Wood D., Hirschberg E., Sequential infrared radiation and freeze-drying method for producing crispy strawberries. Trans. ASABE, 2008, 51, 205-216.Google Scholar

  • Stapelfeldt H., Nielsen B. R., Skibsted L. H., Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int. Dairy J., 1997, 7, 331-339.Google Scholar

  • Tsinontides S. C., Rajniak P., Pham D., Hunke W. A., Placek J., Reynolds S. D., Freeze drying-principles and practice for successful scale-up to manufacturing. Int. J. Pharm., 2004, 280, 1-16.Google Scholar

  • Tsuka H., Mori H., Okada K., Matsukawa S., Utilization of the freeze-drying method in the preparation of biologically active, intact RNA from hard frozen tissues of human prostate. Anal. Biochem., 1997, 247, 458-461.Google Scholar

  • Winkler M. M., Monaghan P., Gilbert J. L., Lautenschlager E. P., Freeze-drying and scanning electron microscopy of setting dental gypsum. Dent. Mater. J., 1995, 11, 226-230.Google Scholar

  • Witrowa-Rajchert D., Lewicki P. P., Rehydration properties of dried plant tissues. Int. J. Food Sci. Technol., 2006, 41, 1040-1046.Google Scholar

  • Yunfei L., Chengzhi W., The optimal parameters of freeze drying of food. 1996, in: Proc. of the 10th Int. Dry. Symp. (IDS '96), Krakow, Poland, 30 July-2 August 1996, Vol. B, pp. 801-804.Google Scholar

  • Zhai S., Taylor R., Sanches R., Slater N. K. H., Measurement of lyophilisation primary drying rates by freeze-drying microscopy. Chem. Eng. Sci., 2003, 58, 2313-2323.Google Scholar

About the article


Published Online: 2011-09-22

Published in Print: 2011-09-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-011-0017-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in