Jump to ContentJump to Main Navigation
Show Summary Details

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR increased in 2015: 0.679

SCImago Journal Rank (SJR) 2015: 0.345
Source Normalized Impact per Paper (SNIP) 2015: 0.516
Impact per Publication (IPP) 2015: 0.756

Open Access
Online
ISSN
2083-6007
See all formats and pricing

Bacterial Biofilms on Food Contact Surfaces - a Review

Kamila Myszka
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
/ Katarzyna Czaczyk
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
Published Online: 2011-09-22 | DOI: https://doi.org/10.2478/v10222-011-0018-4

Bacterial Biofilms on Food Contact Surfaces - a Review

This review will discuss some of the basic concepts concerning biofilm formation, development and control in the food industry. Biofilm formation process on food contact surfaces can have a detrimental effect on the microbial status of food. The presence of biofilm on abiotic materials can contaminate the product through direct contact. As a consequence, food spoilage is likely to occur that may lead to reduced shelf life and increased risk of food poisoning from pathogens. Bacteria colonizing food processing surfaces are extremely difficult to eradicate. Biofilms can tolerate antimicrobial agents at concentrations of 10-1000 times that needed to inactivate genetically equivalent planktonic bacteria. A better understanding of bacterial adhesion process is needed for the production of microbiologically-safe and good-quality products in the food industry.

Keywords: biofilm; adhesion; food processing; extracellular matrix; preventing

  • Aminov R. I., A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol., 2010, 1, 1-7.

  • Anderl J. N., Franklin M. J., Stewart P. S., Role of antibiotic penetration limitation in Klebsiella pneumonia biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother., 2000, 44, 1818-1824. [Crossref]

  • Applegate D. H., Bryers J. D., Effects of carbon and oxygen limitation and calcium concentrations on biofilm recovery processes. Biotechnol. Bioeng., 1991, 37, 17-25. [Crossref]

  • Baker J. H., Factors affecting the bacterial colonization of various surfaces in a river. Can. J. Microbiol., 1984, 30, 511-515. [Crossref]

  • Barnes L.-M., Lo M. F., Adams M. R., Chamberlain A. H. L., Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl. Environ. Microbiol., 1999, 65, 4543-4548. [PubMed]

  • Benito Y., Pin C., Marin M.L, Garcia M. L., Selgas M. D., Casas C., Cell surface hydrophobicity and attachment of pathogenic and spoilage bacteria to meat surfaces. Meat Sci., 1997, 45, 419-425. [PubMed] [Crossref]

  • Bogusławska-Wąs E., Lisiecki S., Drozdowska A., Ilczuk K., Effect of biofilm formation by Pseudomonas aeruginosa on gas permeability of food wrapping foils. Pol. J. Food Nutr. Sci., 2007, 57, 167-172.

  • Bos R., Van der Mei H. C., Gold J., Busscher H. J., Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiol. Lett., 2000, 189, 311-315.

  • Bower C. K., Daeschel M. A., McGuire J., Protein antimicrobial barriers to bacterial adhesion. J. Dairy Sci., 1998, 81, 2771-2778. [Crossref]

  • Bower C. K., McGuire J., Daeschel M. A., The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci. Technol., 1996, 7, 152-157.

  • Branda S. S., Vik A., Friedman L., Kolter R., Biofilm: the matrix revisited. Trends Microbiol., 2005, 13, 20-26. [Crossref] [PubMed]

  • Bryan F. L., Hazard Analysis Critical Control Point (HACCP) systems for retail food and restaurant operations. J. Food Prot., 1990, 53, 978-983.

  • Burfoot D., Middleton K. E., Holah J. T., Removal of biofilms and stubborn soil by pressure washing. Trends Food Sci. Technol., 2009, 20, S45-S47.

  • Busalmen J. P., de Sanchez S. R., Influence of pH and ionic strength on adhesion of a wild strain of Pseudomonas sp. to titanium. J. Ind. Microbiol. Biotechnol., 2001, 26, 303-308. [Crossref]

  • Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P., Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol., 2002, 10, 238-245. [PubMed] [Crossref]

  • Carpentier B., Cerf O., Biofilms and their consequences with particular reference to hygiene in the food industry. J. Appl. Bacteriol., 1993, 75, 499-511.

  • Caubet R., Pedarros-Caubert F., Chu M., Freye E., de Belem-Rodrigues M., Moreau J. M., Ellison W. J., A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother., 2004, 48, 4662-4664. [Crossref]

  • Chmielewski R. A. N., Frank J. T., Biofilm formation ad control in food processing facilities. Com. Rev. Food Sci. Food Safety., 2003, 2, 22-32. [Crossref]

  • Costerton J. W., Introduction to biofilm. Int. J. Antimicrob. Agents, 1999, 11, 217-221. [Crossref] [PubMed]

  • Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M., Microbial biofilms. Ann. Rev. Microbiol., 1995, 49, 711-745. [Crossref]

  • Cunliffe D., Smart C. A., Alexander C., Vulfson E. N., Bacterial adhesion at synthetic surfaces. Appl. Environ. Microbiol., 1999, 65, 4995-5002. [PubMed]

  • Czaczyk K., Białas W., Myszka K., Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion. Pol. J. Microbiol., 2008, 57, 313-319. [PubMed]

  • Czaczyk K., Myszka K., Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol. J. Environm. Stud., 2007, 16, 799-806.

  • Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P., The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280, 295-298.

  • De Beer D., Srinivasan R., Stewart P. S., Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 1994, 60, 4339-4344. [PubMed]

  • De Kievit T. R., Parkins M. D., Gillis R. J., Srikumar H., Ceri K., Poole K., Iglewski B. H., Storey D. G., Multidrug efflux pumps: expression pattern and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2001, 45, 1761-1770. [Crossref]

  • Donian R. M., Biofilms: microbial life on surfaces. Emerg. Infect. Dis., 2002, 8, 881-890.

  • Drenkard E., Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microb. Infect., 2003, 5, 1213-1219. [Crossref]

  • Dunne W. M., Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev., 2002, 15, 155-166. [PubMed] [Crossref]

  • Dunsmore D. G., Twomey A., Whittlestone W. G., Morgan H. W., Design and performance of systems for cleaning product-contact surfaces of food equipment: a review. J. Food Prot., 1981, 44, 220-240.

  • Faille C., Jullien C., Fontaine F., Bellon-Fontaine M. N., Slomianny C., Benezech T., Adhesion of Bacillus spores and Escherichia coli cells to inert surface: role of surface hydrophobicity. Can. J. Microbiol., 2002, 48, 728-738. [Crossref]

  • Fleming H. C., Wingender J., Relevance of microbial extracellular polymeric substances (EPSs) - Part I: Structural and ecological aspects. Water Sci. Technol., 2001, 43, 1-8.

  • Flint S. H., Brooks J. D., Bremer P. J., The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel. J. Appl. Microbiol., 1997, 83, 508-517. [Crossref]

  • Fuster-Valls N., Hernández-Herrero M., Marín-de-Mateo M., Rodríguez-Jerez J. J., Effect of different environmental conditions on the bacteria survival on stainless steel surface. Food Contr., 2008, 19, 308-314. [Crossref]

  • Gelians P., Goulet J., Tastayre G. M., Picard G. A., Effect of temperature and contact time on the activity of 8 disinfectans - a classification. J. Food Prot., 1984, 47, 841-847.

  • González J. E., Keshavan N. D., Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 2006, 70, 859-875. [PubMed] [Crossref]

  • Gu J.-D., Belay B., Mitchell R., Protection of catheter surfaces from adhesion of Pseudomonas aeruginosa by a combination of silver ions and lectins. World J. Microbiol. Biotechnol., 2001, 17, 173-179. [Crossref]

  • Gunduz G. T., Tuncel G., Biofilm formation in an ice cream plant. Antonie van Leeuwenhoek., 2006, 89, 329-336.

  • Harkonen P., Salo S., Mattia-Sanholm T., Writanen G., Allison D. G., Gilbert P., Development of a simple in vitro test system for the disinfection of bacterial biofilm. Water Sci. Technol., 1999, 39, 219-225. [Crossref]

  • Havelaar A. H., Application of HACCP to drinking water supply. Food Contr., 1994, 5, 145-152. [Crossref]

  • Herald P. J., Zottola E. A., Attachment of Listeria monocytogenes to stainless steel surface at various temperatures and pH values. J. Food Sci., 1988b, 53, 1549-1562. [Crossref]

  • Herald P. J., Zottola E. A., Scanning electron microscopic examination of Yersinia enterocolitica attached to stainless steel at elevated temperature and pH value. J. Food Sci., 1988a, 51, 445-448.

  • Hood S. K., Zottola E. A., Biofilms in food processing. Food Contr., 1995, 6, 9-18. [Crossref]

  • Hood S. K., Zottola E. A., Isolation and identification of adherent gram-negative microorganisms from four meat-processing facilities. J. Food Sci., 1997, 60, 1135-1138.

  • Howell D., Behrends B., A review of surface roughness in antifouling coatings illustrating the importance of cut off length. Biofouling, 2006, 22, 401-410. [Crossref]

  • Ito A., Toniuchi A., May T., Kawata K., Okabe S., Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl. Environ. Microbiol., 2009, 75, 4093-4100. [Crossref]

  • Jefferson K. K., What drives bacteria to produce biofilm? FEMS Microbiol. Lett., 2004, 236, 163-173.

  • Jones C. R., Adams M. R., Zhdan P. A., Chamberlain A. H. L., The role of surface physicochemical properties in determining the distribution of the autochthonous microflora in mineral water bottles. J. Appl. Microbiol., 1999, 86, 917-927. [Crossref]

  • Jucker B. A., Harms H., Zehnder A. J. B., Adhesion of the positively charged bacterium Stenotrophonmonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol., 1996, 178, 5472-5479.

  • Kim H., Ryc J.-H., Beuchat C. R., Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol., 2006, 72, 5846-5856. [Crossref]

  • Kim K. Y., Frank J. F., Effect of nutrients on biofilm formation by Listaria monocytogenes on stainless steel. J. Food Prot., 1995, 58, 24-28.

  • Kumar C. G., Anand S. K., Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol., 1998, 42, 9-27. [PubMed] [Crossref]

  • Langille S. E., Geesey G. G., Weiner R. M., Polysaccharide - specific probes inhibit adhesion of Hyphomonas rosenbergii strain VP-6 to hydrophilic surfaces. J. Ind. Microbol. Biotechnol., 2000, 25, 81-85.

  • Le Magrex-Debar E., Lemoine J., Gellé M. P., Jaqueline L. F., Choisy C., Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol., 2000, 5, 239-243.

  • Lindsay D., Brözel V. S., Mostert J. F., von Holy A., Physiology of diary-associated Bacillus spp. over a wide pH range. Int. J. Food. Microbiol., 2000, 54, 49-62. [Crossref]

  • Liu Y., Tay J. H., Detachment forces and their influence on the structure and metabolic behavior of biofilms. World J. Microbiol. Biotechnol., 2001, 17, 111-117. [Crossref]

  • Liu Y., Yang S. F., Li Y., Xu H., Qin L., Tay J. H., The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotechnol., 2004, 110, 251-256.

  • Liu Y., Zhao Q., Influence of surface energy of modified surfaces on bacterial adhesion. Biophysic. Chem., 2005, 117, 39-45.

  • Marshall K. C., Biofilms: on overview of bacterial adhesion, activity, and control of surfaces. ASM News, 1992, 58, 202-207.

  • Marshall K. C., Stout R., Mitchell R., Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol., 1971, 68, 337-348. [Crossref]

  • McCarthy S. A., Attachment of Listeria monocytogenes to chitin and resistance to biocides. Food Technol., 1992, 46, 84-88.

  • McDonell C., Russel A. D., Antiseptic and disinfectants: activity, action and resistance. Clin. Microbiol. Rev., 1999, 12, 147-179.

  • McEldowney S., Fletcher M., Adhesion of bacteria from mixed cell suspension to solid surfaces. Arch. Microbiol., 1987, 148, 57-62. [PubMed] [Crossref]

  • McEldowney S., Fletcher M., Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol., 1986, 52, 460-465. [PubMed]

  • McGuire J., Swartzel K. R., The influence of solid surface energetic on macromolecular adsorption from milk. J. Food Proc. Preserv., 1989, 13, 145-160. [Crossref]

  • Miron J., Ben-Ghedalia D., Morrison M., Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci., 2001, 84, 1294-1309. [Crossref]

  • Mitik-Dineva N., Wang J., Mocanascu C. R., Stoddart P. R., Craw ford R. J., Ivanova E. P., Impact of nano-topography on bacterial attachment. Biotechnol. J., 2008, 3, 536-544.

  • Mitik-Dineva N., Wang J., Truong V. K., Stoddart P. R., Malherbe F., Crawford R. J., Ivanova E. P., Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol., 2009, 58, 268-273. [Crossref]

  • Mittelman M. W., Structure and functional characteristics of bacterial biofilms in fluid processing operations. J. Dairy Sci., 1998, 81, 2760-2764. [Crossref]

  • Monsan P., Bozonnet S., Albenne C., Joucla G., Willemot R. M., Remaud-Simeon M., Homopolysaccharides from lactic acid bacteria. Int. Dairy J., 2001, 11, 675-685. [Crossref]

  • Myszka K., Czaczyk K., Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol., 2009, 58, 541-546. [Crossref]

  • Myszka K., Czaczyk K., Schmidt M. T., Olejnik A. M., Cell surface properties as factors involved in Proteus vulgaris adhesion to stainless steel under starvation conditions. World J. Microbiol. Biotechnol., 2007, 23, 1605-1612. [Crossref]

  • Pereni C. I., Zhao Q., Liu Y., Abel E., Surface free energy effect on bacterial retention. Coll. Surfaces, 2006, 48, 143-147.

  • Pontefract R. D., Bacterial adherence: its consequences in food processing. Can. Inst. Sci. Technol. J., 1991, 24, 113-117. [Crossref]

  • Poulsen L. V., Microbial biofilm in food processing. Leb.-Wiss. Technol., 1999, 32, 321-326.

  • Prigent-Comabaret C., Prensier G., Le Thi T. T., Vidal O., Lejeuene P., Dorel C., Development pathway for biofilm formation in curli-producing Escherichia coli stains: role of flagella, curli and cloanic acid. Environm. Microiol., 2000, 2, 450-464. [Crossref]

  • Qian Z., Sagers R. D., Pitt W. G., Investigation of the mechanism of the bioacoustic effect. J. Biomed Mat. Res., 1999, 44, 198-205. [Crossref]

  • Rashid M. H., Rao N. N., Kornberg A., Inorganic polyphosphate is required for motility of bacterial pathogens. J. Bacteriol., 2000, 182, 225-227.

  • Ronner A., Wong A., Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella typhimurium on stainless steel and buna-N rubber. J. Food Prot., 1993, 56, 750-780.

  • Samrakandi M. M., Roques C., Michael G., Influence of tropic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine. Can. J. Microbiol., 1997, 43, 751-758. [Crossref]

  • Sanin S. L., Sanin F. D., Bryers J. D., Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem., 2003, 38, 909-914. [Crossref]

  • Scardino A. J., Harvey E., De Nys R., Testing attachment point theory: diatom attachment microtextured polyimide biomimics. Biofouling, 2006, 22, 55-60. [PubMed] [Crossref]

  • Schembri M. A., Hjerrild L., Gjermansen M., Klemm P., Differential expression of the Escherichia coli autoaggregation factor antigen 43. J. Bacteriol., 2003, 185, 2236-2242.

  • Shi X., Zhu X., Biofilm formation and food safety in food industries. Trends Food Sci. Technol., 2009, 20, 407-413.

  • Shu C.-H., Lung M.-Y., Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorate in batch cultures. Process Biochem., 2004, 39, 931-937. [Crossref]

  • Silvestry-Rodriguez N., Bright K. R., Slack D. C., Uhlmann D. R., Gerba C. P., Silver as a residual disinfectant to prevent biofilm formation in water distribution systems. Appl. Environ. Microbiol., 2008, 74, 1639-1641. [Crossref]

  • Stewart P. S., Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292, 107-113.

  • Suci P. A., Mittelman M. W., Yu F. P., Geesey G. G., Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 1994, 38, 2125-2133. [Crossref] [PubMed]

  • Sutherland I. W., Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, 2001, 147, 3-9.

  • Ton-That H., Marraffini L. A., Schneewind O., Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta, 2004, 1694, 269-278.

  • Tuomola E. M., Ouwehand A. C., Salminen S. J., Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol., 2000, 60, 75-81. [Crossref] [PubMed]

  • van Houdt R., Michiels C. W., Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol., 2005, 156, 626-633. [Crossref]

  • Vuong C., Otto M., Staphylococcus epidermidis infections. Microb. Infection, 2002, 4, 481-489. [Crossref]

  • Wirtanen G., Matilla-Sandholm T., Epifluorescence image analysis and cultivation of foodborne biofilm bacteria grown on stainless steel surfaces. J. Food Prot., 1993, 56, 678-683.

  • Xu K. D., McFeters G. A., Stewart P. S., Biofilm resistance to antimicrobial agents. Microbiology, 2000, 146, 547-549. [PubMed]

  • Zeraik A. E., Nitschke M., Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr. Microbiol., 2010, 61, 554-559. [Crossref] [PubMed]

  • Zgurskaya H. I., Nikaido H., Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol., 2000, 37, 219-225. [Crossref] [PubMed]

  • Zhang L., Mah T.-F., Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol., 2008, 190, 4447-4452. [Crossref]

  • Zottola E. A., Scientific status, summary, Microbial attachment and biofilm formation, a new problem for food industry. Food Technol., 1994, 48, 107-114.

About the article


Published Online: 2011-09-22

Published in Print: 2011-09-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-011-0018-4. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in