Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Bacterial Biofilms on Food Contact Surfaces - a Review

Kamila Myszka
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Czaczyk
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-22 | DOI: https://doi.org/10.2478/v10222-011-0018-4

Bacterial Biofilms on Food Contact Surfaces - a Review

This review will discuss some of the basic concepts concerning biofilm formation, development and control in the food industry. Biofilm formation process on food contact surfaces can have a detrimental effect on the microbial status of food. The presence of biofilm on abiotic materials can contaminate the product through direct contact. As a consequence, food spoilage is likely to occur that may lead to reduced shelf life and increased risk of food poisoning from pathogens. Bacteria colonizing food processing surfaces are extremely difficult to eradicate. Biofilms can tolerate antimicrobial agents at concentrations of 10-1000 times that needed to inactivate genetically equivalent planktonic bacteria. A better understanding of bacterial adhesion process is needed for the production of microbiologically-safe and good-quality products in the food industry.

Keywords: biofilm; adhesion; food processing; extracellular matrix; preventing

  • Aminov R. I., A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol., 2010, 1, 1-7.Google Scholar

  • Anderl J. N., Franklin M. J., Stewart P. S., Role of antibiotic penetration limitation in Klebsiella pneumonia biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother., 2000, 44, 1818-1824.CrossrefGoogle Scholar

  • Applegate D. H., Bryers J. D., Effects of carbon and oxygen limitation and calcium concentrations on biofilm recovery processes. Biotechnol. Bioeng., 1991, 37, 17-25.CrossrefGoogle Scholar

  • Baker J. H., Factors affecting the bacterial colonization of various surfaces in a river. Can. J. Microbiol., 1984, 30, 511-515.CrossrefGoogle Scholar

  • Barnes L.-M., Lo M. F., Adams M. R., Chamberlain A. H. L., Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl. Environ. Microbiol., 1999, 65, 4543-4548.PubMedGoogle Scholar

  • Benito Y., Pin C., Marin M.L, Garcia M. L., Selgas M. D., Casas C., Cell surface hydrophobicity and attachment of pathogenic and spoilage bacteria to meat surfaces. Meat Sci., 1997, 45, 419-425.PubMedCrossrefGoogle Scholar

  • Bogusławska-Wąs E., Lisiecki S., Drozdowska A., Ilczuk K., Effect of biofilm formation by Pseudomonas aeruginosa on gas permeability of food wrapping foils. Pol. J. Food Nutr. Sci., 2007, 57, 167-172.Google Scholar

  • Bos R., Van der Mei H. C., Gold J., Busscher H. J., Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiol. Lett., 2000, 189, 311-315.Google Scholar

  • Bower C. K., Daeschel M. A., McGuire J., Protein antimicrobial barriers to bacterial adhesion. J. Dairy Sci., 1998, 81, 2771-2778.CrossrefGoogle Scholar

  • Bower C. K., McGuire J., Daeschel M. A., The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci. Technol., 1996, 7, 152-157.Google Scholar

  • Branda S. S., Vik A., Friedman L., Kolter R., Biofilm: the matrix revisited. Trends Microbiol., 2005, 13, 20-26.CrossrefPubMedGoogle Scholar

  • Bryan F. L., Hazard Analysis Critical Control Point (HACCP) systems for retail food and restaurant operations. J. Food Prot., 1990, 53, 978-983.Google Scholar

  • Burfoot D., Middleton K. E., Holah J. T., Removal of biofilms and stubborn soil by pressure washing. Trends Food Sci. Technol., 2009, 20, S45-S47.Google Scholar

  • Busalmen J. P., de Sanchez S. R., Influence of pH and ionic strength on adhesion of a wild strain of Pseudomonas sp. to titanium. J. Ind. Microbiol. Biotechnol., 2001, 26, 303-308.CrossrefGoogle Scholar

  • Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P., Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol., 2002, 10, 238-245.PubMedCrossrefGoogle Scholar

  • Carpentier B., Cerf O., Biofilms and their consequences with particular reference to hygiene in the food industry. J. Appl. Bacteriol., 1993, 75, 499-511.Google Scholar

  • Caubet R., Pedarros-Caubert F., Chu M., Freye E., de Belem-Rodrigues M., Moreau J. M., Ellison W. J., A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother., 2004, 48, 4662-4664.CrossrefGoogle Scholar

  • Chmielewski R. A. N., Frank J. T., Biofilm formation ad control in food processing facilities. Com. Rev. Food Sci. Food Safety., 2003, 2, 22-32.CrossrefGoogle Scholar

  • Costerton J. W., Introduction to biofilm. Int. J. Antimicrob. Agents, 1999, 11, 217-221.CrossrefPubMedGoogle Scholar

  • Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M., Microbial biofilms. Ann. Rev. Microbiol., 1995, 49, 711-745.CrossrefGoogle Scholar

  • Cunliffe D., Smart C. A., Alexander C., Vulfson E. N., Bacterial adhesion at synthetic surfaces. Appl. Environ. Microbiol., 1999, 65, 4995-5002.PubMedGoogle Scholar

  • Czaczyk K., Białas W., Myszka K., Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion. Pol. J. Microbiol., 2008, 57, 313-319.PubMedGoogle Scholar

  • Czaczyk K., Myszka K., Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol. J. Environm. Stud., 2007, 16, 799-806.Google Scholar

  • Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P., The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280, 295-298.Google Scholar

  • De Beer D., Srinivasan R., Stewart P. S., Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 1994, 60, 4339-4344.PubMedGoogle Scholar

  • De Kievit T. R., Parkins M. D., Gillis R. J., Srikumar H., Ceri K., Poole K., Iglewski B. H., Storey D. G., Multidrug efflux pumps: expression pattern and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2001, 45, 1761-1770.CrossrefGoogle Scholar

  • Donian R. M., Biofilms: microbial life on surfaces. Emerg. Infect. Dis., 2002, 8, 881-890.Google Scholar

  • Drenkard E., Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microb. Infect., 2003, 5, 1213-1219.CrossrefGoogle Scholar

  • Dunne W. M., Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev., 2002, 15, 155-166.PubMedCrossrefGoogle Scholar

  • Dunsmore D. G., Twomey A., Whittlestone W. G., Morgan H. W., Design and performance of systems for cleaning product-contact surfaces of food equipment: a review. J. Food Prot., 1981, 44, 220-240.Google Scholar

  • Faille C., Jullien C., Fontaine F., Bellon-Fontaine M. N., Slomianny C., Benezech T., Adhesion of Bacillus spores and Escherichia coli cells to inert surface: role of surface hydrophobicity. Can. J. Microbiol., 2002, 48, 728-738.CrossrefGoogle Scholar

  • Fleming H. C., Wingender J., Relevance of microbial extracellular polymeric substances (EPSs) - Part I: Structural and ecological aspects. Water Sci. Technol., 2001, 43, 1-8.Google Scholar

  • Flint S. H., Brooks J. D., Bremer P. J., The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel. J. Appl. Microbiol., 1997, 83, 508-517.CrossrefGoogle Scholar

  • Fuster-Valls N., Hernández-Herrero M., Marín-de-Mateo M., Rodríguez-Jerez J. J., Effect of different environmental conditions on the bacteria survival on stainless steel surface. Food Contr., 2008, 19, 308-314.CrossrefGoogle Scholar

  • Gelians P., Goulet J., Tastayre G. M., Picard G. A., Effect of temperature and contact time on the activity of 8 disinfectans - a classification. J. Food Prot., 1984, 47, 841-847.Google Scholar

  • González J. E., Keshavan N. D., Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 2006, 70, 859-875.PubMedCrossrefGoogle Scholar

  • Gu J.-D., Belay B., Mitchell R., Protection of catheter surfaces from adhesion of Pseudomonas aeruginosa by a combination of silver ions and lectins. World J. Microbiol. Biotechnol., 2001, 17, 173-179.CrossrefGoogle Scholar

  • Gunduz G. T., Tuncel G., Biofilm formation in an ice cream plant. Antonie van Leeuwenhoek., 2006, 89, 329-336.Google Scholar

  • Harkonen P., Salo S., Mattia-Sanholm T., Writanen G., Allison D. G., Gilbert P., Development of a simple in vitro test system for the disinfection of bacterial biofilm. Water Sci. Technol., 1999, 39, 219-225.CrossrefGoogle Scholar

  • Havelaar A. H., Application of HACCP to drinking water supply. Food Contr., 1994, 5, 145-152.CrossrefGoogle Scholar

  • Herald P. J., Zottola E. A., Attachment of Listeria monocytogenes to stainless steel surface at various temperatures and pH values. J. Food Sci., 1988b, 53, 1549-1562.CrossrefGoogle Scholar

  • Herald P. J., Zottola E. A., Scanning electron microscopic examination of Yersinia enterocolitica attached to stainless steel at elevated temperature and pH value. J. Food Sci., 1988a, 51, 445-448.Google Scholar

  • Hood S. K., Zottola E. A., Biofilms in food processing. Food Contr., 1995, 6, 9-18.CrossrefGoogle Scholar

  • Hood S. K., Zottola E. A., Isolation and identification of adherent gram-negative microorganisms from four meat-processing facilities. J. Food Sci., 1997, 60, 1135-1138.Google Scholar

  • Howell D., Behrends B., A review of surface roughness in antifouling coatings illustrating the importance of cut off length. Biofouling, 2006, 22, 401-410.CrossrefGoogle Scholar

  • Ito A., Toniuchi A., May T., Kawata K., Okabe S., Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl. Environ. Microbiol., 2009, 75, 4093-4100.CrossrefGoogle Scholar

  • Jefferson K. K., What drives bacteria to produce biofilm? FEMS Microbiol. Lett., 2004, 236, 163-173.Google Scholar

  • Jones C. R., Adams M. R., Zhdan P. A., Chamberlain A. H. L., The role of surface physicochemical properties in determining the distribution of the autochthonous microflora in mineral water bottles. J. Appl. Microbiol., 1999, 86, 917-927.CrossrefGoogle Scholar

  • Jucker B. A., Harms H., Zehnder A. J. B., Adhesion of the positively charged bacterium Stenotrophonmonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol., 1996, 178, 5472-5479.Google Scholar

  • Kim H., Ryc J.-H., Beuchat C. R., Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol., 2006, 72, 5846-5856.CrossrefGoogle Scholar

  • Kim K. Y., Frank J. F., Effect of nutrients on biofilm formation by Listaria monocytogenes on stainless steel. J. Food Prot., 1995, 58, 24-28.Google Scholar

  • Kumar C. G., Anand S. K., Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol., 1998, 42, 9-27.PubMedCrossrefGoogle Scholar

  • Langille S. E., Geesey G. G., Weiner R. M., Polysaccharide - specific probes inhibit adhesion of Hyphomonas rosenbergii strain VP-6 to hydrophilic surfaces. J. Ind. Microbol. Biotechnol., 2000, 25, 81-85.Google Scholar

  • Le Magrex-Debar E., Lemoine J., Gellé M. P., Jaqueline L. F., Choisy C., Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol., 2000, 5, 239-243.Google Scholar

  • Lindsay D., Brözel V. S., Mostert J. F., von Holy A., Physiology of diary-associated Bacillus spp. over a wide pH range. Int. J. Food. Microbiol., 2000, 54, 49-62.CrossrefGoogle Scholar

  • Liu Y., Tay J. H., Detachment forces and their influence on the structure and metabolic behavior of biofilms. World J. Microbiol. Biotechnol., 2001, 17, 111-117.CrossrefGoogle Scholar

  • Liu Y., Yang S. F., Li Y., Xu H., Qin L., Tay J. H., The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotechnol., 2004, 110, 251-256.Google Scholar

  • Liu Y., Zhao Q., Influence of surface energy of modified surfaces on bacterial adhesion. Biophysic. Chem., 2005, 117, 39-45.Google Scholar

  • Marshall K. C., Biofilms: on overview of bacterial adhesion, activity, and control of surfaces. ASM News, 1992, 58, 202-207.Google Scholar

  • Marshall K. C., Stout R., Mitchell R., Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol., 1971, 68, 337-348.CrossrefGoogle Scholar

  • McCarthy S. A., Attachment of Listeria monocytogenes to chitin and resistance to biocides. Food Technol., 1992, 46, 84-88.Google Scholar

  • McDonell C., Russel A. D., Antiseptic and disinfectants: activity, action and resistance. Clin. Microbiol. Rev., 1999, 12, 147-179.Google Scholar

  • McEldowney S., Fletcher M., Adhesion of bacteria from mixed cell suspension to solid surfaces. Arch. Microbiol., 1987, 148, 57-62.PubMedCrossrefGoogle Scholar

  • McEldowney S., Fletcher M., Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol., 1986, 52, 460-465.PubMedGoogle Scholar

  • McGuire J., Swartzel K. R., The influence of solid surface energetic on macromolecular adsorption from milk. J. Food Proc. Preserv., 1989, 13, 145-160.CrossrefGoogle Scholar

  • Miron J., Ben-Ghedalia D., Morrison M., Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci., 2001, 84, 1294-1309.CrossrefGoogle Scholar

  • Mitik-Dineva N., Wang J., Mocanascu C. R., Stoddart P. R., Craw ford R. J., Ivanova E. P., Impact of nano-topography on bacterial attachment. Biotechnol. J., 2008, 3, 536-544.Google Scholar

  • Mitik-Dineva N., Wang J., Truong V. K., Stoddart P. R., Malherbe F., Crawford R. J., Ivanova E. P., Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol., 2009, 58, 268-273.CrossrefGoogle Scholar

  • Mittelman M. W., Structure and functional characteristics of bacterial biofilms in fluid processing operations. J. Dairy Sci., 1998, 81, 2760-2764.CrossrefGoogle Scholar

  • Monsan P., Bozonnet S., Albenne C., Joucla G., Willemot R. M., Remaud-Simeon M., Homopolysaccharides from lactic acid bacteria. Int. Dairy J., 2001, 11, 675-685.CrossrefGoogle Scholar

  • Myszka K., Czaczyk K., Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol., 2009, 58, 541-546.CrossrefGoogle Scholar

  • Myszka K., Czaczyk K., Schmidt M. T., Olejnik A. M., Cell surface properties as factors involved in Proteus vulgaris adhesion to stainless steel under starvation conditions. World J. Microbiol. Biotechnol., 2007, 23, 1605-1612.CrossrefGoogle Scholar

  • Pereni C. I., Zhao Q., Liu Y., Abel E., Surface free energy effect on bacterial retention. Coll. Surfaces, 2006, 48, 143-147.Google Scholar

  • Pontefract R. D., Bacterial adherence: its consequences in food processing. Can. Inst. Sci. Technol. J., 1991, 24, 113-117.CrossrefGoogle Scholar

  • Poulsen L. V., Microbial biofilm in food processing. Leb.-Wiss. Technol., 1999, 32, 321-326.Google Scholar

  • Prigent-Comabaret C., Prensier G., Le Thi T. T., Vidal O., Lejeuene P., Dorel C., Development pathway for biofilm formation in curli-producing Escherichia coli stains: role of flagella, curli and cloanic acid. Environm. Microiol., 2000, 2, 450-464.CrossrefGoogle Scholar

  • Qian Z., Sagers R. D., Pitt W. G., Investigation of the mechanism of the bioacoustic effect. J. Biomed Mat. Res., 1999, 44, 198-205.CrossrefGoogle Scholar

  • Rashid M. H., Rao N. N., Kornberg A., Inorganic polyphosphate is required for motility of bacterial pathogens. J. Bacteriol., 2000, 182, 225-227.Google Scholar

  • Ronner A., Wong A., Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella typhimurium on stainless steel and buna-N rubber. J. Food Prot., 1993, 56, 750-780.Google Scholar

  • Samrakandi M. M., Roques C., Michael G., Influence of tropic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine. Can. J. Microbiol., 1997, 43, 751-758.CrossrefGoogle Scholar

  • Sanin S. L., Sanin F. D., Bryers J. D., Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem., 2003, 38, 909-914.CrossrefGoogle Scholar

  • Scardino A. J., Harvey E., De Nys R., Testing attachment point theory: diatom attachment microtextured polyimide biomimics. Biofouling, 2006, 22, 55-60.PubMedCrossrefGoogle Scholar

  • Schembri M. A., Hjerrild L., Gjermansen M., Klemm P., Differential expression of the Escherichia coli autoaggregation factor antigen 43. J. Bacteriol., 2003, 185, 2236-2242.Google Scholar

  • Shi X., Zhu X., Biofilm formation and food safety in food industries. Trends Food Sci. Technol., 2009, 20, 407-413.Google Scholar

  • Shu C.-H., Lung M.-Y., Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorate in batch cultures. Process Biochem., 2004, 39, 931-937.CrossrefGoogle Scholar

  • Silvestry-Rodriguez N., Bright K. R., Slack D. C., Uhlmann D. R., Gerba C. P., Silver as a residual disinfectant to prevent biofilm formation in water distribution systems. Appl. Environ. Microbiol., 2008, 74, 1639-1641.CrossrefGoogle Scholar

  • Stewart P. S., Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292, 107-113.Google Scholar

  • Suci P. A., Mittelman M. W., Yu F. P., Geesey G. G., Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 1994, 38, 2125-2133.CrossrefPubMedGoogle Scholar

  • Sutherland I. W., Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, 2001, 147, 3-9.Google Scholar

  • Ton-That H., Marraffini L. A., Schneewind O., Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta, 2004, 1694, 269-278.Google Scholar

  • Tuomola E. M., Ouwehand A. C., Salminen S. J., Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol., 2000, 60, 75-81.CrossrefPubMedGoogle Scholar

  • van Houdt R., Michiels C. W., Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol., 2005, 156, 626-633.CrossrefGoogle Scholar

  • Vuong C., Otto M., Staphylococcus epidermidis infections. Microb. Infection, 2002, 4, 481-489.CrossrefGoogle Scholar

  • Wirtanen G., Matilla-Sandholm T., Epifluorescence image analysis and cultivation of foodborne biofilm bacteria grown on stainless steel surfaces. J. Food Prot., 1993, 56, 678-683.Google Scholar

  • Xu K. D., McFeters G. A., Stewart P. S., Biofilm resistance to antimicrobial agents. Microbiology, 2000, 146, 547-549.PubMedGoogle Scholar

  • Zeraik A. E., Nitschke M., Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr. Microbiol., 2010, 61, 554-559.CrossrefPubMedGoogle Scholar

  • Zgurskaya H. I., Nikaido H., Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol., 2000, 37, 219-225.CrossrefPubMedGoogle Scholar

  • Zhang L., Mah T.-F., Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol., 2008, 190, 4447-4452.CrossrefGoogle Scholar

  • Zottola E. A., Scientific status, summary, Microbial attachment and biofilm formation, a new problem for food industry. Food Technol., 1994, 48, 107-114.Google Scholar

About the article


Published Online: 2011-09-22

Published in Print: 2011-09-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-011-0018-4.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Diana Gutiérrez, Lucía Fernández, Beatriz Martínez, Patricia Ruas-Madiedo, Pilar García, and Ana Rodríguez
Frontiers in Microbiology, 2017, Volume 8
[2]
Agata Los, Dana Ziuzina, Daniela Boehm, Patrick J. Cullen, and Paula Bourke
Innovative Food Science & Emerging Technologies, 2017
[3]
Grzegorz Czerwonka, Anna Guzy, Klaudia Kałuża, Michalina Grosicka, Magdalena Dańczuk, Łukasz Lechowicz, Dawid Gmiter, Paweł Kowalczyk, and Wiesław Kaca
Archives of Microbiology, 2016, Volume 198, Number 9, Page 877
[4]
Alonzo A. Gabriel, Maria Chelsea Clarisse F. Ugay, Maria Auxilla T. Siringan, Leo Mendel D. Rosario, Roy B. Tumlos, and Henry J. Ramos
Innovative Food Science & Emerging Technologies, 2016, Volume 36, Page 311
[5]
Racha Majed, Christine Faille, Mireille Kallassy, and Michel Gohar
Frontiers in Microbiology, 2016, Volume 7
[6]
Diana Gutiérrez, Lorena Rodríguez-Rubio, Beatriz Martínez, Ana Rodríguez, and Pilar García
Frontiers in Microbiology, 2016, Volume 7
[7]
Sezgin Bakirdere, Mustafa Tahsin Yilmaz, Fatih Tornuk, Seyfullah Keyf, Azime Yilmaz, Osman Sagdic, and Bunyamin Kocabas
Food Research International, 2015, Volume 76, Page 439

Comments (0)

Please log in or register to comment.
Log in