Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
See all formats and pricing
More options …

Microbial Profile of Gouda Cheese During Ripening in Two Independent Chambers - a Short Report

Piotr Kołakowski / Richard Podolak / Marta Kowalska
Published Online: 2012-07-26 | DOI: https://doi.org/10.2478/v10222-012-0051-y

Microbial Profile of Gouda Cheese During Ripening in Two Independent Chambers - a Short Report

A study was undertaken to evaluate changes in microbial populations of nonstarter lactic acid bacteria (NSLAB), yeast and starter lactic acid bacteria (SLAB) in Gouda cheese in two independent chambers during the ripening process up to 12 weeks. No differences in populations of the tested group of microorganisms were observed at 4, 8 and 12 weeks in both the dairy and dairy-independent chambers. Populations of the analysed groups of LAB reached maximum numbers at week 4 of ripening and then gradually decreased with further aging, however with different dynamics for different species. The SLAB were the predominant microflora after salt treatment and accounted for 90% of the total microbial population in Gouda cheese. Cheese ripening led to the predomination of NSLAB and yeast populations and to a decrease in the population of SLAB. Homo- and heterofermentative vancomycin-tolerant Lactobacillus spp. constituted for the majority of the NSLAB populations. The yeast counts, at the initial populations of 4 log10 CFU/g, were increased by 2 logs after 4 weeks and were slightly reduced at 8 and 12 weeks of ripening. At 12 weeks of ripening, nonstarter Lactobacillus spp. enumerated at 25°C exceeded 90% of total LAB population while the yeast population comprised over 40% of the total LAB counts. The majority of NSLAB consisted of vancomycin-tolerant homo- and heterofermentative species of Lactobacillus.

Keywords: Gouda cheese; NSLAB; yeast; starter lactic acid bacteria; cheese ripening

  • Agarwal S., Sharma K., Swanson B.G., Yuksel G.U., Clark S., Nonstarter lactic acid bacteria biofilms and calcium lactate crystals in cheddar cheese. J. Dairy Sci., 2006, 89, 1452-1466.CrossrefGoogle Scholar

  • Alessandria V., Dolci P., Rantsiou K., Pattono D., Dalmasso A., Civera T., Cocolin L., Microbiota of the Planalto de Bolona: an artisanal cheese produced in uncommon environmental conditions in the Cape Verde Islands. World J. Microbiol. Biotechnol., 2010, 26, 2211-2221.Web of ScienceGoogle Scholar

  • Aljewicz M., Cichosz G., Kowalska M., Effect of Lactobacillus rhamnosus Howaru and Lactobacillus acidophilus Howaru probiotic cultures on sensory quality of edam cheese. Żywność, Nauka, Technologia, Jakość, 2010, 73, 177-188(in Polish; English abstract).Google Scholar

  • Barakat O.S., Ibrahim G.A., Tawfik N.F., El-Kholy W.I., Gad El-Rab A.A., Identification and probiotic characteristics of Lactobacillus strains isolated from traditional Domiati cheese. Int. J. Microbiol. Res., 2011, 3, 59-66.Google Scholar

  • Begovic J., Brandsma J.B., Jovcic B., Tolinacki M., Veljovic K., Meijer W.C., Topisirovic L., Analysis of dominant lactic acid bacteria from artisanal raw milk cheeses produced on the mountain Stara Planina, Serbia. Arch. Biol. Sci., 2011, 63, 11-20.CrossrefWeb of ScienceGoogle Scholar

  • Belletti N., Gatti M., Bottari B., Neviani E, Tabanelli G., Gardini F., Antibiotic resistance of lactobacilli isolated from two Italian hard cheeses. J. Food Prot., 2009, 72, 2162-2169.Google Scholar

  • Benkerroum N., Misbah M., Sandine W.E., Elaraki A.T., Development and use of a selective medium for isolation of Leuconostoc spp. from vegetables and dairy products. Appl. Environ. Microbiol., 1993, 59, 607-609.PubMedGoogle Scholar

  • Bockelmann W., Secondary cheese starter cultures. 2010, in: Technology of Cheesemaking (eds. B.A. Law, A.Y. Tamime). Wiley- Blackwell, Chichester, pp. 193-224.Google Scholar

  • Briggiler-Marco M., Capra M.L., Quiberoni A., Vinderola G., Reinheimer J.A., Hynes E., Nonstarter Lactobacillus strains as adjunct cultures for cheese making: in vitro characterization and performance in two model cheese. J. Dairy Sci., 2007, 90, 4532-4542.CrossrefGoogle Scholar

  • Casey M.G., Hani J.P., Gruskovnjak J., Schaeren W., Wechsier D., Characterization of the non-starter lactic acid bacteria (NSLAB) of Gruyere PDO cheese. Lait, 2006, 86, 407-414.CrossrefGoogle Scholar

  • Ciprovica I., Mikelsone A., The influence of ripening temperature on diversity of non-starter lactic acid bacteria in semi-hard cheeses. Romanian Biotechnol. Lett., 2011, 16, 155-162.Google Scholar

  • Cogan T.M., Beresford T.P., Steele J., Broadben J., Shah N.P., Ustunol Z., Invited review: advances in starter cultures and cultured foods. J. Dairy Sci., 2007, 90, 4005-4021.Web of ScienceCrossrefGoogle Scholar

  • Colombo E., Franzetti L., Frusca M., Scarpellini M., Phenotypic and genotypic characterization of lactic acid bacteria isolated from artisanal Italian goat cheese. J. Food Prot., 2010, 73, 657-662.Google Scholar

  • Colombo F., Borgo F., Fortina M.G., Genotypic characterization of non starter lactic acid bacteria involved in the ripening of artisanal Bitto PDO cheese. J. Basic Microbiol., 2009, 49, 521-530.CrossrefWeb of ScienceGoogle Scholar

  • De Freitas I., Pinon N., Maubois J.L., Lortal S., Thierry A., The addition of a cocktail of yeast species to Cantalet cheese changes bacterial survival and enhances aroma compound formation. Int. J. Food Microbiol., 2009, 129, 37-42.Google Scholar

  • Franciosi E., Settanni L., Carlin S., Cavazza A., Poznanski E., A factory-scale application of secondary adjunct cultures selected from lactic acid bacteria during "Puzzone di Moena" cheese ripening. J. Dairy Sci., 2008, 91, 2981-2991.CrossrefWeb of ScienceGoogle Scholar

  • Franciosi E., Settanni L., Cavazza A., Poznanski E., Biodiversity and technological potential of wild lactic acid bacteria from raw cows' milk. Int. Dairy J., 2009, 19, 3-11.CrossrefGoogle Scholar

  • Gala E, Landi S., Solieri L., Nocetti M., Pulvirenti A., Giudici P., Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. Int. J. Food Microbiol., 2008, 125, 347-351.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ghotbi M., Soleimanian-Zad S., Sheikh-Zeinoddin M., Identification of Lactobacillus pentosus, Lactobacillus paraplantarum and Lactobacillus plantarum in Lighvan cheese with 4 month ripening period by means of rec A gene sequence analysis. African J. Biotechnol., 2011, 10, 1902-1906.Google Scholar

  • Hoier E., Janzen T., Rattray F., Sorensen K., Borsting M.W., Brockmann E., The production, application and action of lactic cheese starter cultures. 2010, in: Technology of Cheesemaking (eds. B.A. Law, A.Y. Tamime). Wiley- Blackwell, Chichester, pp.166-192.Google Scholar

  • IDF, Yoghurt - Identification of characteristic micro-organisms (Lactobacillus delbruecki subsp. bulgaricus and Streptococcus thermophilus), 2003, Standard No. 146, International Dairy Federation, Brussels.Google Scholar

  • Jokovic N., Vukasinovic M., Veljovic K., Tolinacki M., Topisirovic L., Characterization of non-starter lactic acid bacteria in traditionally produced home-made Radan cheese during ripening. Arch. Biol. Sci., 2011, 63, 1-10.Web of ScienceCrossrefGoogle Scholar

  • Kołakowski P., Silkowski M., Gmurkowska L., Babuchowski A., Kujawski M., Sensitivity of lactic acid bacteria to vancomycin. Polish J. Natural Sci., 2004, Suppl. 2, 75-79.Google Scholar

  • Kongo J.M., Gomes A.M., Malcata F.X., McSweeney P.L.H., Microbiological, biochemical and compositional changes during ripening of Sao Jorge - a raw milk cheese from the Azores (Portugal). Food Chem., 2009, 112, 131-138.Web of ScienceGoogle Scholar

  • Martin-Platero A.M., Valdivia E., Maqueda M., Martin-Sanchez I., Martinez-Bueno M., Polyphasic approach to bacterial dynamics during the ripening of Spanish farmhouse cheese, using culture-dependent and -independent methods. Appl. Environ. Microbiol., 2008, 74, 5662-5673.CrossrefWeb of ScienceGoogle Scholar

  • Mirzaei H., Microbiological changes in Lighvan cheese throughout its manufacture and ripening. African J. Microbiol. Res., 2011, 5, 1609-1614.Google Scholar

  • Mlalazi M., Winslow A.R., Beaubrun J.J-G., Eribo B.E., Occurrence of pediocin PA-1/AcH-like bacteriocin in native non-starter Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus from retail Cheddar cheese. Internet J. Food Safety, 2011, 13, 325-331.Google Scholar

  • Morales F., Morales J.I., Hernandez C.H., Hernandez-Sanchez H., Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses. Appl. Biochem. Biotechnol., 2011, 164, 889-905.Web of ScienceGoogle Scholar

  • Mounier J., Monnet C., Vallaeys T., Arditi R., Sarthou A.S., Helias A., Irlinger F., Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol., 2008, 74, 172-181.CrossrefPubMedGoogle Scholar

  • Nickels C., Leesment H., Method zur Differenzierung und Quantitativen Bestimmung var. Säureweckerbakterien. Milchwissenschaft, 1964, 19, 374-378.Google Scholar

  • Orberg P.K., Sandine W.E., Common occurrence of plasmid DNA and vancomycin resistance in Leuconostoc spp. Appl. Environ. Microbiol., 1984, 48, 1129-1133.PubMedGoogle Scholar

  • Randazzo C.L., De Luca S., Todaro A., Restuccia C., Lanza C.M., Spagna G., Caggia C., Preliminary characterization of wild lactic acid bacteria and their abilities to produce flavor compounds in ripened model cheese system. J. Appl. Microbiol., 2007, 103, 427-435.Web of ScienceGoogle Scholar

  • Randazzo C.L., Pitino I., Ribbera A., Caggia C., Pecorino Crotonese cheese: study of bacterial population and flavor compounds. Food Microbiol., 2010, 27, 363-374.CrossrefWeb of ScienceGoogle Scholar

  • Rantsiou K., Urso R., Dolci P., Comi G., Cocolin L., Microflora of Feta cheese from four Greek manufactures. Int. J. Food Microbiol., 2008, 126, 36-42.Web of ScienceCrossrefGoogle Scholar

  • Rea M.C., Lennartsson T., Dillon P., Drinan F.D, Reville W.J., Heapes M., Cogan T.M., Irish kefir-like grains: their structure, microbial composition and fermentation kinetics. J. Appl. Bacteriol., 1996, 81, 83-94.Google Scholar

  • Samelis J., Kakouri A., Pappa E.C., Matijasic B.B., Georgalaki M. D., Tsakalidou E., Rogelj A., Microbial stability and safety of traditional Greek Graviera cheese: characterization of the lactic acid bacterial flora and culture-independent detection of bacteriocin genes in the ripened cheeses and their microbial consortia. J. Food Prot., 2010, 73, 1294-1303.Google Scholar

  • Settanni L., Moschetti G., Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol., 2010, 27, 691-697.Web of ScienceCrossrefPubMedGoogle Scholar

  • Simpson W.J, Hammond J.R.M., Miller R.B., Avoparcin and vancomycin: useful antibiotics for the isolation of brewery lactic acid bacteria. J. Appl. Bacteriol., 1988, 64, 299-309.Google Scholar

  • Svec P., Drab V., Sedlacek I., Ribotyping of Lactobacillus casei group strains isolated from dairy products. Folia Microbiol., 2005, 50, 223-228.CrossrefGoogle Scholar

  • Svensson U.K, Starter culture characterization by conductance methods. J. Dairy Sci., 1994, 77, 3516-3523.Google Scholar

  • Terzic-Vidojevic A., Tolinacki M., Nikolic M., Lozo J., Begovic J., Gulahmadov S.G.O., Kuliev A.A., Dalgalarrondo M., Chobert J-M., Haertle T., Topisirovic L., Phenotypic and genotypic characterization of lactic acid bacteria isolated from Azerbaijani traditional dairy products. African J. Biotechnol., 2009, 8, 2576-2588.Google Scholar

  • Veljovic K., Terzic-Vidojevic A., Vukasinovic M., Strahinic I., Begovic J., Lozo J., Ostojic M., Topisirovic L., Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese. J. Appl. Microbiol., 2007, 103, 2142-2152.Google Scholar

  • Viljoen B.C., Greyling T., Yeast associated with Cheddar and Gouda making. Int. J. Food Microbiol., 1995, 28, 79-88.PubMedCrossrefGoogle Scholar

  • Welthagen J.J., Viljoen B.C., Yeast profile in Gouda cheese during processing and ripening. Int. J. Food Microbiol., 1998, 41, 185-194.PubMedCrossrefGoogle Scholar

  • Wyder M.T., Yeasts in dairy products. Publisher FAM Swiss Federal Dairy Research Station Liebefeld, Berne, Switzerland, 2001, 425, 1-21Google Scholar

  • Zago M., Fornasari M.E., Rossetti L., Bonvini B., Scano L., Carminati D., Giraffa G., Population dynamics of lactobacilli in Grana cheese. Annals Microbiol., 2007, 57, 349-353.Web of ScienceGoogle Scholar

About the article

Published Online: 2012-07-26

Published in Print: 2012-09-01

Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 62, Issue 3, Pages 179–184, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0051-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A.B. Yarlagadda, M.G. Wilkinson, M.G. O'Sullivan, and K.N. Kilcawley
International Dairy Journal, 2014, Volume 38, Number 2, Page 124

Comments (0)

Please log in or register to comment.
Log in