Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
See all formats and pricing
More options …

Healthy Multifunctional Spectra of Milk Glycoproteins and Their Fragments - a Review Article

Atef Fayed
Published Online: 2012-07-26 | DOI: https://doi.org/10.2478/v10222-012-0053-9

Healthy Multifunctional Spectra of Milk Glycoproteins and Their Fragments - a Review Article

The functionalities of glycoprotein lactoferrin (LF) and glycomacropeptide (GMP) were discussed. LF is considered a multifunctional protein. Its absorption in the bowel; immune response; antioxidant, anti-carcinogenic and anti-inflammatory properties; and protection against microbial infection, were the most widely studied functions to date. Besides, promotion of balanced intestinal flora by preventing growth of harmful bacteria and stimulating bifidus, LF helps to secure a correct balance of the intestinal flora. Although, most of the proposed biological activities of LF are related to the binding of iron, the non-iron related functions have been described as well, such as regulation of iron metabolism, prevention of oxidation and control of cell or tissues damage (result of aging).

Likewise, GMP, which is a carbohydrate-containing peptide formed from chymosin or pepsin digestion of κ-casein, exhibits several useful biological activities, including binding of cholera toxin and E. coli enterotoxins, inhibition of bacterial and viral adhesions, suppression of gastric secretions, promotion of bifidobacterial growth, and modulation of immune responses. GMP contains no aromatic amino acids and is therefore used for phenylketonuria (PKU) suffering patients.

The carbohydratic parts bound to such glycoprotein or glycopeptide, may act as prebiotics in the intestine and colon.

Keywords: primary structures of lactoferrin (LF) and glycomacropeptide (GMP); biological; physiological and therapeutic benefits of LF and GMP

  • Abe H., Saito H., Miyakawa H., Tamura Y., Shimamura S., Nagao E., Tomita M., Heat stability of bovine lactoferrin at acidic pH. J. Dairy Sci., 1991, 74, 65-71.CrossrefGoogle Scholar

  • Adlerova L., Bartoskova A., Faldyna M., Lactoferrin: a review. Veterinarni Medicina, 2008, 53, 457-468.Google Scholar

  • Ajello M., Greco R., Giansanti F., Massucci M.T., Antonini G., Valenti P., Anti-invasive activity of bovine lactoferrin towards group A streptococci. Biochem. Cell Biol., 2002, 80, 119-124.Google Scholar

  • Aleinik S.I., Stan E.Y., Chernikov M.P., Study of the mechanism of acid secretion inhibition with κ-casein peptides in the stomach. Fiziologicheskii Zhurnal SSSR, 1986, 72, 799-803.Google Scholar

  • Andres M.T., Fierro J.F., Antimicrobial mechanism of action of transferrins: Selective inhibition of H+-ATPase. Antimicrob. Agents Chemother., 2010, 54, 4335-4342.PubMedCrossrefGoogle Scholar

  • Andersen J.H., Osbakk S.A., Vorland L.H., Traavik T., Gutteberg T.J., Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res., 2001, 51,141-149.CrossrefGoogle Scholar

  • Anonymous, Overview of lactoferrin. Agro Food Industry Hi-Tech., 2003, 14, 32-35.Google Scholar

  • Arnold R.R., Cole M.F., McGhee J.R., A bactericidal effect for human lactoferrin. Science, 1977, 197, 263-265.Google Scholar

  • Azuma N., Yamauchi K., Mitsouka T., Bifidius growth-promoting activity of a glycomacropeptide derived from human κ-casein. Agric. Biol. Chem., 1984, 48, 2159-2162.CrossrefGoogle Scholar

  • Baker E.N., Baker H.M., Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci., 2005, 62, 2531-2539.CrossrefPubMedGoogle Scholar

  • Batish V.K., Chander H., Zumdegeni K.C., et al., Antibacterial activity of lactoferrin against some common food-borne pathogenic organisms. Aust. J. Dairy Tech., 1988, 43, 16-18.Google Scholar

  • Baveye S., Elass E., Mazurier J., Spik G., Legrand D., Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin. Chem. Lab. Med., 1999, 37, 281-286.PubMedGoogle Scholar

  • Bellamy W., Takase M., Wakabayashi H., Kawase K., Tomita M., Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta, 1992, 1121, 130-136.Google Scholar

  • Bessler H.C., de Oliveira I.R., Giugliano L.G., Human milk glycoproteins inhibit the adherence of Salmonella typhimurium to HeLa cells. Microbiol. Immunol., 2006, 50, 877-882.CrossrefGoogle Scholar

  • Beucher S., Levenez F., Yvon M., Corring T., Effect of gastric digestive products from casein on CCK release by intestinal cells in rat. J. Nutr. Biochem., 1994a, 5, 578-584.CrossrefGoogle Scholar

  • Beucher S., Levenez F., Yvon M., Corring T., Effect of caseinomacropeptide (CMP) on cholecystokinin (CCK) release in rat. Reprod. Nutr. Dev., 1994b, 34, 613-614.CrossrefGoogle Scholar

  • Bezkorovainy A., Grolich D., Nichols J.H., Isolation of a glycopolypeptide fraction with Lactobacillus bifidus subspecies pennsylvanicus growth-promoting activity from whole human milk casein. Am. Clin. Nutr., 1979, 32, 1428-1432.Google Scholar

  • Birgens H.S., Lactoferrin in plasma measured by an ELISA technique: evidence that plasma lactoferrin is an indicator of neutrophil turnover and bone marrow activity in acute leukemia. Scand. J. Haematol., 1985, 34, 326-331.PubMedGoogle Scholar

  • Bortner C.A., Arnold R.R., Miller R.D., Bactericidal effect of lactoferrin on Legionella pneumophila: effect of the physiological state of the organism. Can. J. Microbiol., 1989, 35, 1048-1051.CrossrefPubMedGoogle Scholar

  • Boxer L.A., Coates T.D., Haak R.A., Wolach J.B., Hoffstein S., Baehner R.L., Lactoferrin deficiency associated with altered granulocyte function. New Engl. J. Med., 1982, 307, 404-410.Google Scholar

  • Breton-Gorius J., Mason D.Y., Buriot D., et al., Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy. Am. J. Pathol., 1980, 99, 413-428.Google Scholar

  • Brody E.P., Biological activities of bovine glycomacropeptide. Br. J. Nutr., 2000, 84, S39-S46.Google Scholar

  • Brock J.H., Human cytokines. 1998, in: Handbook for Basic and Clinical Research. Vol. 3. (ed. B.B. Aggarwal). Blackwell Publ., Inc., Malden, Mass. pp. 92-123.Google Scholar

  • Brock J.H., The physiology of lactoferrin. Biochem. Cell Biol., 2002, 80, 1-6.CrossrefPubMedGoogle Scholar

  • Bruck W.M., Graverholt G., Gibson G.R., A two-stage continuous culture system to study the effect of supplemental alphalactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella serotype typhimurium. J. Appl. Microbiol., 2003a, 95, 44-53.CrossrefGoogle Scholar

  • Bruck W.M., Kelleher S.L., Gibson G.R., Nielsen K.E., Chatterton D.E., Lönnerdal B., rRNA probes used to quantify the effects of glycomacropeptide and alpha-lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli. J. Pediatr. Gastroenterol. Nutr., 2003b, 37, 273-280.CrossrefGoogle Scholar

  • Bruck W.M., Redgrave M., Tuohy K.M., Lönnerdal B., Graverholt G., Hernell O., Gibson G.R., Effects of bovine alpha-lactalbumin and casein glycomacropeptide-enriched infant formulae on faecal microbiota in healthy term infants. J. Pediatr. Gastroenterol. Nutr., 2006, 43, 673-679.CrossrefGoogle Scholar

  • Caradonna L., Amati L., Lella P., Jirillo E., Caccavo D., Phagocytosis, killing, lymphocyte-mediated antibacterial activity, serum autoantibodies, and plasma endotoxins in inflammatory bowel disease. Am. J. Gastroeneterol., 2000, 95, 1495-1502.PubMedGoogle Scholar

  • Cirioni O., Giacometti A., Barchiesi F., Scalise G., Inhibition of growth of Pneumocystis carinii by lactoferrin alone and in combination with pyrimethamine, clarithromycin and minocycline. J. Antimicrob. Chemother., 2000, 46, 577-582.Google Scholar

  • Clare R., The benefits of CMP. Dairy Industries Int., 1998, 63, 29-31.Google Scholar

  • Daddaoua A., Puerta V., Zarzuelo A., Sua'rez M.D., Sa'nchez de Medina F., Martinez-Augustin O., Bovine glycomacropeptide is anti-inflammatory in rats with Hapten-induced colitis. J. Nutr., 2005, 135, 1164-1170.Google Scholar

  • Damiens E., El Yazidi I., Mazurier J., Duthille I., Spik G., Boilly-Marer Y., Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cell. J. Cell Biochem., 1999, 74, 486-498.Google Scholar

  • Damiens E., Mazurier J., El Yazidi I., Masson M., Duthille I., Spik G., Boilly-Marer Y., Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour cell. Biochim. Biophys. Acta, 1998, 1402, 277-287.Google Scholar

  • Darewicz M., Dziuba B., Minkiewicz P., Dziuba J., The preventive potential of milk and colostrum proteins and protein fragments. Food Rev. Int., 2011, 27, 357-388.CrossrefGoogle Scholar

  • Devi A.S., Das M.R., Pandit M.W., Lactoferrin contains structural motifs of ribonuclease. Biochim. Biophys. Acta, 1994, 1205, 275-281.Google Scholar

  • Dial E.J., Lichtenberger L.M., Effect of lactoferrin on Helicobacter felis induced gastritis. Biochem. Cell Biol., 2002, 80, 113-117.Google Scholar

  • Di Mario F., Aragona G., Dal Bo N., Cavestro G.M., Cavallaro L., Iori V., Comparato G., Leandro G., Pilotto A., Franzè A., Use of bovine lactoferrin for Helicobacter pylori eradication. Dig. Liver Dis., 2003, 35, 706-710.CrossrefGoogle Scholar

  • Doi H., Ibuki F., Kanamori M., Hetrogeneneity of reduced bovine κ-casein. J. Dairy Sci., 1979, 62, 195-203.CrossrefGoogle Scholar

  • Doi H., Kobatake H., Fumio I., Kanamori M., Attachment sites of carbohydrate portions to peptide chain of κ-casein from bovine colostrum. Agric. Biol. Chem., 1980, 44, 2605-2611.CrossrefGoogle Scholar

  • Dosako S., Kusano H., Deya E., Idota T., Infectionprotectant. United States Patent, 1992, 5147853.Google Scholar

  • Egashira M., Takayanagi T., Moriuchi M., Moriuchi H., Does daily intake of bovine lactoferrin-containing products ameliorate rotaviral gastroenteritis?. Acta Paediatr., 2007, 96, 1242-1244.CrossrefPubMedGoogle Scholar

  • Eigel W.N., Butler J.E., Ernstrom C.A., Farrell H.M., Harwalkar V.R., Jenness R., Whitney R.M., Nomenclature of proteins of cow's milk: fifth revision. J. Dairy Sci., 1984, 67, 1599-1631.CrossrefGoogle Scholar

  • Farnaud S., Evans R.W., Lactoferrin - a multifunctional protein with antimicrobial properties. Mol. Immunol., 2003, 40, 395-405.CrossrefPubMedGoogle Scholar

  • Farrell H.M. Jr., Jimenez-Flores R., Bleck G.T., Brown E.M., Butler J.E., Creamer L.K., Hicks C.L., Hollar C.M., Ng-Kwai-Hang K.F., Swaisgood H.E., Nomenclature of the proteins of cows' milk—Sixth revision. J. Dairy Sci., 2004, 87, 1641-1674.Google Scholar

  • Faure J.-C., Schellenberg D.A., Bexter A., Wuerzner H.P., Barrier effect of Bifidobacterium longum on a pathogenic Escherichia coli strain by gut colonization in the germ-free rat. Zeitschrift fur Ernahrungswissenschaft, 1984, 23, 41-51.CrossrefGoogle Scholar

  • Fayed A.E., Hussein G.A., El-Mahdy L.D., Masoud M.S., Gab-Allah R.H., Glycoprotein fortification of bioyoghurt. Egypt. J. Food Sci., 2011a, 39, 81-106.Google Scholar

  • Fayed A.E., Hussein G.A., El-Mahdy L.D., Youssef M.S., Gab-Allah R.H., Improvement of yoghurt efficiency as functional food by glycoprotein fortification. J. Biol. Chem. Environ. Sci., 2011b, 6, 241-265.Google Scholar

  • Fiat A.-M., Alais C., Jolles P., Caesin 25. The amino-acid and carbohydrate sequences of a short glycopeptide isolated from bovine κ-casein. Eur. J. Biochem., 1972, 27, 408-412.CrossrefGoogle Scholar

  • Fiat A-M., Jolles P., Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol. and Cell. Biochem., 1989, 87, 5-30.Google Scholar

  • Fiat A-M., Jolles J., Loucheux-Lefebvre M.-H., Alais C., Jolles P., Localization of the prosthetic sugar groups of bovine colostrum κ-casein. Hoppe-Seyler's Zeitschrift fur Physiologische Chem., 1981, 362, 1447-1454.Google Scholar

  • Fournet B., Fiat A.-M., Alais C., Jolles P., Cow κ-casein: structure of the carbohydrate portion. Biochim. Biophys. Acta, 1979, 576, 339-346.Google Scholar

  • Fournet B., Fiat A.-M., Montreuil J., Jolles P., The sugar part of κ-caseins from cow milk and colostrum and its microheterogeneity. Biochimie, 1975, 57, 161-165.PubMedCrossrefGoogle Scholar

  • Furmanski P., Li Z.P., Fortuna M.B., Swamy C.V., Das M.R., Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J. Exp. Med., 1989, 170, 415-429.Google Scholar

  • Gahr M., Speer C.P., Damerau B., Sawatzki G., Influence of lactoferrin on the function of human polymorphonuclear leukocytes and monocytes. J. Leukoc. Biol., 1991, 49, 427-433.Google Scholar

  • Gasymov O.K., Abduragimov A.R., Yusifov T.N., Glasgow B.J., Interaction of tear lipocalin with lysozyme and lactoferrin. Biochem. Biophys. Res. Comm., 1999, 265, 322-325.Google Scholar

  • Gauthier S.F., Pouliot Y., Saint-Sauveur D., Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J., 2006, 16, 1315-1323.CrossrefGoogle Scholar

  • Giansanti F., Rossi P., Massucci M.T., Botti D., Valenti G., Seganti L., Antiviral activity of ovotransferrin discloses an evolutionary strategy for defensive activities of lactoferrin. Biochem. Cell Biol., 2002, 80, 125-130.Google Scholar

  • Gill H.S., Rutherford K.J., Cross M.L., Bovine milk: a unique source of immunomodulatory ingredients for functional foods. 2000, in: Functional Foods II - Claims and Evidence (eds. J. Buttriss, M. Saltmarsh). Royal Society of Chemistry Press, Cambridge, England, pp. 82-90.Google Scholar

  • Glasgow L.R., Hill R.L., Interaction of Mycoplasma gallisepticum with sialyl glycoproteins. Inf. Immun., 1980, 30, 353-361.Google Scholar

  • Gonzalez-Chavez S.A., Arevalo-Gallegos S., Rascon-Cruz Q., Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents, 2009, 33, 301e1-301e8.Google Scholar

  • Gray-Owen S.D., Schryvers A.B., Bacterial transferring and lactoferrin receptors. Trends Microbiol., 1996, 4, 185-191.CrossrefGoogle Scholar

  • Griffiths C.E., Cumberbatch M., Tucker S.C., Dearman R.J., Andrew S., Headon D.R., Kimber I., Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous inflammation in humans. Br. J. Dermatol., 2001, 144, 715-725.Google Scholar

  • Guillen C., McInnes I.B., Vaughan D., Speekenbrink A.B., Brock J.H., The effect of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis Rheum., 2000, 43, 2073-2080.PubMedCrossrefGoogle Scholar

  • Guilloteau P., Chayvialle J.A., Mendy F., Roger L., Toullec R., Bernard C., Mouats A., Faverdin P., Effect of caseinomacropeptide (CMP) on gastric secretion and plasma levels of digestive hormones in preruminant calves. Reprod. Nutr. Dev., 1987, 27, 287-288.CrossrefGoogle Scholar

  • Guilloteau P., Huerou-Luron I., Chayviaille J.A., Toullec R., Legeas M., Bernard C., Roger L., Mendy F., Effect of caseinomacropeptide (CMP) on gastric secretion and plasma gut regulatory peptides in preruminant calves. Reprod. Nutr. Dev., 1994, 34, 612-613.CrossrefGoogle Scholar

  • Gyorgy P., Jeanloz R.W., Hubertus N., Zilliken F., Undialyzable growth factors for Lactobacillus bifidus var. pennsylvanicus. Eur. J. Biochem., 1974, 43, 29-33.CrossrefGoogle Scholar

  • Gyorgy P., Kuhn R., Rose C.S., Zilliken F., Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Arch. Biochem. Biophys., 1954a, 48, 202-208.CrossrefGoogle Scholar

  • Gyorgy P., Norris R.F., Rose C.S., Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch. Biochem. Biophys., 1954b, 48, 193-201.CrossrefGoogle Scholar

  • Holmgren J., Actions of cholera toxin and the prevention and treatment of cholera. Nature, 1981, 292, 413-416.Google Scholar

  • Hutchens T.W., Henry J.F., Yip T.T., Hachey D.L., Schanler R.J., Motil K.J., Garza C., Origin of intact lactoferrin and its DNA-binding fragments found in the urine of human milk-fed preterm infants. Evaluation by stable isotopic enrichment. Pediatric Res., 1991, 29, 243-250.CrossrefGoogle Scholar

  • Idota T., Sialylated compounds in human milk and their physiological significance in infants. Snow Brand R&D Reports, 1996, 106, 1-55.Google Scholar

  • Iigo M., Kuhara T., Ushida Y., Moore M.A., Tsuda H., Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin. Exp. Metastasis, 1999, 17, 35-40.PubMedGoogle Scholar

  • Ikeda M., Nozaki A., Sugiyama K., Tanaka T., Naganuma A., Tanaka K, Sekihara H., Shimotohno K., Saito M., Kato N., Characterization of antiviral of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res., 2000, 66, 51-63.CrossrefPubMedGoogle Scholar

  • Ikeda M., Sugiyama K., Tanaka T., Lactoferrin markedly inhibits hepatitis C virus infection in cultured human hepatocytes. Biochem. Biophys. Res. Commun., 1998, 245, 549-553.Google Scholar

  • Imoto I., Okuda M., Nakazawa T., Miyashiro E., Yamauchi K., Takakura N., Teraguchi S., Tamura Y., Adachi Y., Suppressive effect of bovine lactoferrin against Helicobacter pylori. Milk Sci., 2004, 53, 288-290.Google Scholar

  • Isoda H., Kawasaki Y., Tanimoto M., Dosako S., Idota T., Use of compounds containing or binding sialic acid to neutralize bacterial toxins. Eur. Patent, 1999, 385112.Google Scholar

  • Jolles J., Schoentgen F., Alais C., Fiat A.M., Jolles P., Studies on the primary structure of cow κ-casein - Structural features of para-κ-casein; N-termianl sequence of κ-caseinoglycopeptide studied with a sequencer. Helv. Chim. Acta, 1972, 55, 2872-2883.CrossrefGoogle Scholar

  • Jones E.M., Smart A., Bloomberg G., Burgess G., Millar M.R., Lactoferricin, a new antimicrobial peptide. J. Appl. Bacteriol., 1994, 77, 208-214.Google Scholar

  • Kanyshkova T.G., Buneva V.N., Nevinsky G.A., Lactoferrin and its biological functions. Biochemistry (Moscow), 2001, 66, 1-7.CrossrefGoogle Scholar

  • Kawaguchi S., Hayashi T., Masano J., Okuyama K., Suzuki T., Kawase K., A study concerning the effect of lactoferrin-enriched infant formula on low birth weight infants. Periant. Med., 1989, 19, 557-562.Google Scholar

  • Kawasaki Y., Isoda H., Shinmoto H., Tanimoto M., Dosako S., Idota T., Nakajima I., Inhibition by κ-casein glycomacropeptide and lactoferrin of influenza virus hemaglutination. Biosci. Biotech. Biochem., 1993, 57, 1214-1215.CrossrefGoogle Scholar

  • Kawasaki Y., Isoda H., Tanimoto M., Dosako S., Idota T., Ahiko K., Inhibition by lactoferrin and κ-casein glycomacropeptide of binding of cholera toxin to its receptor. Biosci. Biotech. Biochem., 1992, 56, 195-198.CrossrefGoogle Scholar

  • Kehagias C., Jao Y.C., Micolajcik E.M., Hansen P.M., Growth response of Bifidobacterium bifidum to a hydrolytic product isolated from bovine casein. J. Food Sci., 1977, 42, 146-150.CrossrefGoogle Scholar

  • Kelleher S.L., Chatterton D., Nielsen K., Lönnerdal B., Glycomacropeptide and α-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr., 2003, 77, 1261-1268.Google Scholar

  • Kim W. S., Ohashi M., Tanaka T., Kumura H., Kim G.Y., Kwon I.K., Goh J.S., Shimazaki K.I., Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. Biometals, 2004, 17, 279-283.CrossrefGoogle Scholar

  • Korhonen H., Pihlanto A., Bioactive peptides: production and functionality. Int. Dairy J., 2006, 16, 945-690.CrossrefGoogle Scholar

  • Kozu T., Saito Y., Matsuda T., Akasu T., Iinuma G., Ohashi Y., Saito D., Tsuda H., Iigo M., Kakizoe T., The efficacy of lactoferrin for suppression of colorectal adenomas. in: Proc. Sixty-fifth Ann. Meet. the Japan. Cancer Assoc., 2006, pp. 461Google Scholar

  • Kuwata H., Yamauchi K., Teraguchi S., Ushida Y., Shimo-Kawa Y., Toida T., Hayasawa H., Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J. Nutr., 2001, 131, 2121-2127.Google Scholar

  • LaBell F., Health-enhancing whey proteins. Prepared Foods, 1998, 167, 143.Google Scholar

  • Lampreave F., Piňeiro A., Brock J.H., Castillo H., Sánchez L., Calvo M., Interaction of bovine lactoferrin with other proteins of milk whey. Int. J. Biol. Macromol., 1990, 12, 2-5.PubMedCrossrefGoogle Scholar

  • Levay P.F., Viljoen M., Lactoferrin: a general review. Haematologica, 1995, 80, 252-267.PubMedGoogle Scholar

  • Li E.W., Mine Y., Immunoenhancing effects of bovine glycomacropeptide and its derivatives on the proliferative response and phagocytic activities of human acrophagelike cells, U937. J. Agric. Food Chem., 2004, 52, 2704-2708.Google Scholar

  • Lim K., Van Calcar S.C., Nelson K.L., Gleason S.T., Ney D.M., Acceptable low-phenylalanine foods and beverages can be made from glycomacropeptide from cheese whey for individuals with PKU. Mol. Genet. Metab., 2007, 92, 176-178.PubMedCrossrefGoogle Scholar

  • Liukkonen J., Haataja S., Tikkanen K., Kelm S., Finne J., Identification of N-acetylneuraminyl a2-3 poly-N-acteyl lactosamine glycans as the receptors of sialic acid-binding Streptococcus suis strains. J. Biol. Chem., 1992, 267, 21105-21111.Google Scholar

  • Loomes L.M., Uemura K., Childs R.A., Paulson J.C., Rogers G.N., Scudder P.R., Michalski J.C., Housell E.F., Taylor-Robinson D., Feizi T., Erythrocyte receptors for Mycoplasma pneumoniae are silaylated oligosaccharides of II antigen type. Nature, 1984, 306, 560-563.Google Scholar

  • Machnicki M., Zimecki M., Zagulski T., Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol., 1993, 74, 433-439.Google Scholar

  • Manso M.A., Lopez-Fandino R., κ-casein macropeptides from cheese whey: physicochemical, biological, nutritional, and technological features for possible uses. Food Rev. Int., 2004, 20, 329-355.CrossrefGoogle Scholar

  • Marshall K., Therapeutic applications of whey protein. Altern. Med. Rev., 2004, 9, 136-156.PubMedGoogle Scholar

  • Marshall S.C., Casein macropeptide from whey. A new product opportunity. Food Res. Quarterly, 1991, 51, 86-91.Google Scholar

  • Masson P.L., Heremans J., Lactoferrin in milk from different species. Comp. Biochem. Physiol., 1971, 39, 119-129.Google Scholar

  • McAbee D.D., Esbensen K., Binding and endocytosis of apoand holo-lactoferrin by isolated rat hepatocytes. J. Biol. Chem., 1991, 266, 23624-23631.Google Scholar

  • McCormick J.A., Markey G.M., Morris T.C., Lactoferrin-inducible monocyte cytotoxicity for K562 cells and decay of natural killer lymphocyte cytotoxicity. Clin. Exp. Immunol., 1991, 83, 154-156.Google Scholar

  • Mencacci A., Cenci E., Boelaert J.R., Mosci P., d'Ostiani C.F., Bistoni F., Romani L., Iron overload alters innate and T helper cell responses to Candida albicans in mice. J. Infect. Dis., 1997, 175, 1467-1476.Google Scholar

  • Mikkelsen T.L., Rasmussen E., Olsen A., Barkhott V., Frøkiær H., Immunogenicity of κ-casein and glycomacropeptide. J. Dairy Sci., 2006, 89, 824-830.CrossrefGoogle Scholar

  • Miyazawa K., Mantel C., Lu L., Morrison D.C., Broxmeyer H.E., Lactoferrin- lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J. Immunol., 1991, 146, 723-729.Google Scholar

  • Monnai M., Otani H., Effect of bovine κ-caseinoglycopeptide on secretion of interleukin-1 family cytokines by P388D1 cells, a line derived from mouse monocyte/macrophage. Milchwissenschaft, 1997, 52, 192-196.Google Scholar

  • Naidu, A.S., Lactoferrin: Natural, Multifunctional, Antimicrobial. 2000, CRC Press LLC, USA.Google Scholar

  • Nakajima K., Tamura N., Kobayashi-Hattori K., Yoshida T., Hara-Kudo Y., Ikedo M., Sugita-Konishi Y., Hattori M., Prevention of intestinal infection by glycomacropeptide. Biosci. Biotechnol. Biochem., 2005, 69, 2294-2301.Google Scholar

  • Neeser J.R., Anti-plaque and anticaries agent. United States Patent, 1991a, 4992420.Google Scholar

  • Neeser J.R., Anti-plaque and anticaries agent. United States Patent, 1991b, 4994441.Google Scholar

  • Neeser J.R., Chambaz A., Hoang K.Y., Link-Amster H., Screening for complex carbohydrates inhibiting hemaggluatinations by CFA/I- and CFA/II-expressing enterotoxigenic Escherichia coli strains. FEMS Microbiol. Letters, 1988a, 49, 301-307.CrossrefGoogle Scholar

  • Neeser J.R., Chambaz A., del Vedovo S.D., Prigent M.J., Guggenheim B., Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystrene by caseinoglycopeptide derivatives. Inf. Immun., 1988b, 56, 3201-3208.Google Scholar

  • Neeser J.R., Golliard M., Woltz A., Rouvet M., Dillmann M.L., Guggenheim B., In vitro modulation of oral bacterial adhesion to saliva-coated hydroxyapatite beads by milk casein derivatives. Oral Microbiol. Immunol., 1994, 9, 193-201.PubMedCrossrefGoogle Scholar

  • Neeser J.R., Grafstrom R.C., Woltz A., Brassart D., Fryder V., Guggenheim B., A 23 kda membrane glycoprotein bearing NeuNacalpha2-3Gal beta1-3GalNAc O-linked carbohydrate chains acts as a receptor for Streptococcus sanguis OMZ 9 on human buccal epithelial cells. Glycobiology, 1995, 5, 97-104.Google Scholar

  • Nejad A.S., Kanekanian A., Tatham A., The inhibitory effect of glycomacropeptide on dental erosion. Dairy Sci. Technol., 2009, 89, 233-239.CrossrefGoogle Scholar

  • Ney D.M., Gleason S.T., Van Calcar S.C., Nutritional management of PKU with glycomacropeptide from cheese whey. J. Inherit. Metab. Dis., 2009, 32, 32-39.CrossrefGoogle Scholar

  • Nielsen P., Tromholt N., Method for production of a kappacasein glycomacropeptide and use of a kappa-casein glycomacropeptide. World Patent, 1994, 9415952.Google Scholar

  • Nishiya K., Horwitz D.A., Contrasting effects of lactoferrin on human lymphocyte and monocyte natural killer activity and antibody-dependent cell-mediated cytotoxicity. J. Immunol., 1982, 129, 2519-2523.Google Scholar

  • Ofek I., Sharon N., Adhesins as lectins: specificity and role in infection. Curr. Topics Microbiol. Immunol., 1990, 151, 91-113.Google Scholar

  • Ohashi A., Murata E., Yamamoto K., Majima E., Sano E., Le Q.T., Katunuma N., New functions of lactoferrin and β-casein in mammalian milk as cysteine protease inhibitors. Biochem. Biophys. Res. Commun., 2003, 306, 98-103.Google Scholar

  • Okazaki K., Uchida K., Ohana M., Nakase H., Uose S., Inai M., Matsushima Y., Katamura K., Ohmori K., Chiba T., Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology, 2000, 118, 573-581.CrossrefGoogle Scholar

  • Okuda M., Nakazawa T., Yamauchi K., Miyashiro E., Koizumi R., Booka M., Teraguchi S., Tamura Y., Yoshikawa N., Adachi Y., Imoto I., Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: a randomized, double-blind, placebo-controlled study. J. Infect. Chemother., 2005, 11, 265-269.Google Scholar

  • Omata Y., Satake M., Maeda R., Saito A., Shimazaki K., Yamauchi K., Uzuka Y., Tanabe S., Sarashina T., Mikami T., Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. J. Vet. Med. Sci., 2001, 63, 189-190.Google Scholar

  • Otani H., Hata I., Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer's patch cells by bovine milk caseins and their digests. J. Dairy Res., 1995, 62, 339-348.CrossrefGoogle Scholar

  • Otani H., Horimoto Y., Monnai M., Suppression of interleukin-2 receptor expression on mouse CD4(+) T cells by bovine κ-caseinoglycopeptide. Biosci. Biotechnol. Biochem., 1996, 60, 1017-1019.CrossrefGoogle Scholar

  • Otani H., Monnai M., Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk κ-casein digests. Food Agri. Immunol., 1993, 5, 219-229.CrossrefGoogle Scholar

  • Otani H., Monnai M., Induction of an interleuken-1receptor antagonist-like component produced from mouse GMP biological activities S45 spleen cells by bovine κ-caseinoglycopeptide. Biosci. Biotechnol. Biochem., 1995, 59, 1166-1168.Google Scholar

  • Otani H., Monnai M., Hosono A., Bovine κ-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopoly-saccharide stimulation. Milchwissenschaft, 1992, 47, 512-515.Google Scholar

  • Otani H, Monnai M., Kawasaki Y., Kawakami H., Tanimoto M., Inhibition of mitogen-induced proliferative responses of lymphocytes by bovine κ-caseinoglycopeptides having different carbohydrate chains. J. Dairy Res., 1995, 62, 349-357.CrossrefGoogle Scholar

  • Pan Y., Lee A., Wan J., Coventry M.J., Michalski W.P., Shiell B., Roginski H., Antiviral properties of milk proteins and peptides. Int. Dairy J., 2006, 16, 1252-1261.CrossrefGoogle Scholar

  • Parkkinen A., Rogers G.N., Korhonen T., Dahr W., Finne J., Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli. Inf. Immun., 1986, 54, 37-42.Google Scholar

  • Payne K.D., Davidson P.M., Oliver S.P., Influence of bovine lactoferrin on the growth of Listeria monocytogenes. J. Food Prot., 1990, 53, 468-472.Google Scholar

  • Petschow B.W., Talbott R.D., Response of Bifidobacterium species to growth promoters in human and cow milk. Pediatric Res., 1991, 29, 208-213.CrossrefGoogle Scholar

  • Pierce A., Colavizza D., Benaissa M., Maes P., Tartar A., Montreul J., Spik G., Molecular cloning and sequence analysis of bovine lactotransferrin. Eur. J. Biochem., 1991, 196, 177-184.CrossrefPubMedGoogle Scholar

  • Poch M., Bezkorovainy A., Growth-enhancing supplements for various species of the genus Bifidobacterium. J. Dairy Sci., 1988, 71, 3214-4221.CrossrefGoogle Scholar

  • Poch M., Bezkorovainy A., Bovine milk κ-casein trypsin digest is a growth enhancer for the genus Bifidobacterium. J. Agri. Food Chem., 1991, 39, 73-77.Google Scholar

  • Powell W.L., Jazwinska E., Halliday J.W., Primary iron overload. 1994, in: Iron Metabolism in Health and Disease. 1st Ed. (eds. J.H. Brock, J.W. Halliday, M.J. Pippard, L.W. Powell). pub. W.B. Saunders Co., London, UK, pp. 227-270.Google Scholar

  • Proulx M., Gauthier S.F., Roy D., Effect of casein hydrolysates on the growth of Bifidobacteria. Le Lait, 1992, 72, 393-404.CrossrefGoogle Scholar

  • Qiu J., Hendrixson D.R., Baker E.N., Murphy T.F., St Geme J.W., Plaut A.G., Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 12641-12646.Google Scholar

  • Reiter B., The biological significance of the non-immunoglobulin protective proteins in milk: lysozome, lactoferrin, lactoper-oxidase. Dev. Dairy Chem., 1985, 3, 281-336.CrossrefGoogle Scholar

  • Roberts A.K., Chierici R., Sawatzki G., Hill M.J., Volpato S., Vigi V., Supplementation of an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal flora. Acta Paediatr, 1992, 81, 119-124.Google Scholar

  • Saito H., Miyakawa H., Tamura Y., Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J. Dairy Sci., 1991, 74, 3724-3730.CrossrefGoogle Scholar

  • Saito T., Itoh T., Variations and distributions of Oglycosidically linked sugar chains in bovine κ-casein. J. Dairy Sci., 1992, 75, 1768-1774.CrossrefGoogle Scholar

  • Saito T., Itoh T., Adachi S., The chemical structure of a tetrasaccharide containing N-acetylglucosamine obtained from bovine colostrum κ-casein. Biochim. Biophys. Acta, 1981, 673, 487-494.Google Scholar

  • Sawatzki G., Rich I.N., Lactoferrin stimulates colony stimulating factor production in vitro and in vivo. Blood Cells, 1989, 15, 371-385.Google Scholar

  • Schengrund C.L., Ringler N.J., Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GM1, derivatives of GM1, and nonlipid oligosaccharide polyvalent ligands. J. Biol. Chem., 1989, 264, 13233-13237.Google Scholar

  • Schupbach P., Neeser J.R., Golliard M., Rouvet M., Guggenheim B., Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. J. Dental Res., 1996, 75, 1779-1788.CrossrefGoogle Scholar

  • Sekine K., Murakoshi M., Satomi Y., Nishino H., Kakizoe T., Tsuda H., Inhibition of initiation and early stage development of aberrant crypt foci and enhanced natural killer activity in male rats administered bovine lactoferrin concomitantly with azoxymethane. Cancer Lett., 1997, 121, 211-216.Google Scholar

  • Shah N.P., Effects of milk-derived bioactives: an overview. Br. J. Nutr., 2000, 84, S3-S10.Google Scholar

  • Shakibaei M., Frevert U., Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor-related protein (LRP) and heparin sulfate proteoglycans. J. Exp. Med., 1996, 184, 1699-1711.Google Scholar

  • Shin K., Wakabayashi H., Yamauchi K., Teraguchi S., Tamura Y., Kurokawa M., Shiraki K., Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. J. Med. Microbiol., 2005, 54, 717-723.CrossrefGoogle Scholar

  • Siciliano R., Rega B., Marchetti M., Seganti L., Antonini G., Valenti P., Bovine lactoferrin peptidic fragments involved in inhibition of herpes simplex virus type 1 infection. Biochem. Biophys. Res. Commun., 1999, 264, 19-23.Google Scholar

  • Simon P.M., Pharmaceutical oligosaccharides. Drug Discovery Today, 1996, 1, 522-528.Google Scholar

  • Smithers G.W., Regester G.O., Bradford R.S., Pearce R.J., New casein protein products for the food industry: physical, chemical and enzymatic manipulation of milk. Food Aust., 1991, 43, 252-254.Google Scholar

  • Sorrentino S., D'Alessandro A.M., Maras B., Ciccio L.D., D'Andrea G., De Prisco R., Bossa F., Libonati M., Oratore A., Purification of a 76-kDa iron-binding protein from human seminal plasma by affinity chromatography specific for ribonuclease: structural and functional identity with milk lactoferrin. Biochim. Biophys. Acta, 1999, 1430, 103-110.Google Scholar

  • Stan E.Y., Chernikov M.P., On the physiological activity of κ-casein glycomacropeptide. Voprosy Meditsinskoi Khimii, 1979, 25, 348-352.PubMedGoogle Scholar

  • Stan E.Y., Chernikov M.P., Formation of a peptide inhibitor of gastric secretion from rat milk proteins in vivo. Bull. Exp. Biol. Med., 1982, 94, 1087-1089.CrossrefGoogle Scholar

  • Stan E.Y., Groisman S.D., Krasil'shchikov K.B., Chernikov M.P., Effects of κ-casein glycomacropeptide motility in dogs. Bull. Exp. Biol. Med., 1983, 95, 889-891.CrossrefGoogle Scholar

  • Steijns J., Dietary proteins as the source of new health promoting bio-active peptides with special attention to glutamine peptide. Food Tech. Eur., 1996, 3, 80-84.Google Scholar

  • Steijns J.M., Van Hooijdonk A.C., Occurrence, structure, bio-chemical properties and technological characteristics of lactoferrin. Br. J. Nutr., 2000, 84, S11-S17.Google Scholar

  • Strøm M.B., Haug B.E., Rekdal Ø., Skar M.L., Stensen W., Svendsen J.S., Important structural features of 15-residue lactoferrin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol., 2002, 80, 65-74.Google Scholar

  • Strøm M.B., Rekdal O., Svendsen J.S., Antibacterial activity of 15-residue lactoferricin derivatives. J. Peptide Res., 2000, 56, 265-274.Google Scholar

  • Sugii S., Tsuji T., Binding and hemagglutinating properties of the B Subunit(s) of heat-labile enterotoxin isolated from human enterotoxigenic Escherichia coli. FEMS Microbiol. Letters, 1990, 66, 45-50.CrossrefGoogle Scholar

  • Suzuki T., Yamauchi K., Kawase K., Collaborative bacteriostatic activity of bovine lactoferrin with lysozyme against E. coli O111. Agric. Biol. Chem., 1989, 53, 1705-1706.CrossrefGoogle Scholar

  • Suzuki Y.A., Lopez V., Lonnerdal B., Mammalian lactoferrin receptors: structure and function. Cell. Molec. Life Sci., 2005, 62, 2560-2575.CrossrefGoogle Scholar

  • Suzuki Y., Lonnerdal B., Characterization of mammalian receptors for lactoferrin. Biochem. Cell Biol., 2002, 80, 75-80.PubMedCrossrefGoogle Scholar

  • Tachezy J., Kulda J., Bahnikova I., Suchan P., Razga J., Schrevel J., Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp. Parasitol., 1996, 83, 216-228.CrossrefPubMedGoogle Scholar

  • Tanaka K., Ikeda M., Nozaki A., Kato N., Tsuda H., Saito S., Sekihara H., Lactoferrin inhibits C virus viremia in patients with chronic hepatitis C: a pilot study. Jpn. J. Cancer Res., 1999, 90, 367-371.Google Scholar

  • Tanaka K., Kawabata K., Kohno H., Honjo S., Murakami M., Ota T., Tsuda H., Chemopreventive effect of bovine lactoferrin on 4-nitroquinoline 1-oxide induced tongue carcinogenesis in male F344 rats. Jpn. J. Cancer Res., 2000, 91, 25-33.Google Scholar

  • Teraguchi S., Ozawa K., Yasuda S., Shin K., Fukuwatari Y., Shimamura S., The bacteriostatic effects of orally administered bovine lactoferrin on intestinal Enterobacteriaceae of SPF mice fed bovine milk. Biosci. Biotechnol. Biochem., 1994, 58, 482-487.CrossrefGoogle Scholar

  • Teraguchi S., Shin K., Ogata T., Kingaku M., Kaino A., Miyauchi H., Fukuwatari Y., Shimamura S., Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk. Appl. Environ. Microbiol., 1995, 61, 4131-4134.PubMedGoogle Scholar

  • Teraguchi S., Wakabayashi H., Kuwata H., Yamauchi K., Tamura Y., Protection against infection by oral lactoferrin: evaluation in animal models. Biometals, 2004, 17, 231-234.CrossrefPubMedGoogle Scholar

  • Tomita M., Wakabayashi H., Shin K., Yamauchi K., Yaeshima T., Iwatsuki K., Twenty-five years of research on bovine lactoferrin applications. Biochimie, 2009, 91, 52-57PubMedCrossrefGoogle Scholar

  • Tomita M., Wakabayashi H., Yamauchi K., Teraguchi S., Hayasawa H., Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem. Cell Biol., 2002, 80, 109-112.Google Scholar

  • Trif M., Guillen C., Vaughan D.M., Telfer J.M., Brewer J.M., Roseanu A., Brock J.H., Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp. Biol. Med., 2001, 226, 559-564.Google Scholar

  • Tran V.D., Baker B.E., Casein IX. Carbohydrate moiety of κ-casein. J. Dairy Sci., 1970, 53, 1009-1012.CrossrefGoogle Scholar

  • Tsuda H., Sekine K., Fujita K., Iigo M., Cancer prevention by bovine lactoferrin and underlying mechanisms - a review of experimental and clinical studies. Biochem. Cell Biol., 2002, 80, 131-136.PubMedCrossrefGoogle Scholar

  • Ushida Y., Sekine K., Kuhara T., Takasuka N., Iigo M., Tsuda H., Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc (Min) mouse. Cancer Lett., 1998, 134, 141-145.Google Scholar

  • Van Calcar S.C., MacLeod E.L., Gleason S.T., Etzel M.R., Clayton M.K., Wolff J.A., Ney D.M., Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am. J. Clin. Nutr., 2009, 89, 1068-1077.Google Scholar

  • Van Halbeek H., Dorland L., Vliegenthart J.F.G., Fiat A.M., Jolles P., A 360-MHz 1H-NMR study of three oligosaccharides isolated from cow κ-casein. Biochim. Biophys. Acta, 1980, 623, 295-300.Google Scholar

  • Van Heyningen S., Cholera toxin: interaction of subunits with ganglioside GM1. Science, 1974, 183, 656-657.Google Scholar

  • Van Hooijdonk A.C., Kussendrager K.D., Steijns J.M., In vivo antimicrobial and antiviral activity of components in bovine milk and colostrums involved in non-specific defence. Br. J. Nut., 2000, 84, S127-S134.Google Scholar

  • Van Hooydonk A.C.M., Olieman C., Hagedoorn H.G., Kinetics of the chymosin-catalyzed proteolysis of κ-casein in milk. Neth. Milk Dairy J., 1984, 38, 207-222.Google Scholar

  • Van Snick J.L., Masson P.L., Heremans J.F., The involvement of lactoferrin in the hyposideremia of acute inflammation. J. Exp. Med., 1974, 140, 1068-1084.Google Scholar

  • Vasilevskaya L.S., Stan E.Y., Chernikov M.P., Shlygin G.K., Inhibitory action of glycomacropeptide produced on the gastric secretion by various humoral stimulants. Voprosy Pitaniya, 1977, 4, 21-24.Google Scholar

  • Viejo-Diaz M., Andres M.T., Fierro J.F., Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob. Agents Chemother., 2004, 48, 1242-1248.CrossrefGoogle Scholar

  • Wakabayashi H., Kurokawa M., Shin K., Teraguchi S. Tamura Y., Shiraki K., Oral lactoferrin prevents body weight loss and increase cytokine responses during herpes simplex virus type 1 infection of mice. Biosci. Biotechnol. Biochem., 2004a, 68, 537-544.Google Scholar

  • Wakabayashi H., Kuwata H., Yamauchi K., Teraguchi S., Tamura Y., No detectable transfer of dietary lactoferrin or its functional fragments to portal blood in health adult rats. Biosci. Biotechnol. Biochem., 2004b, 68, 853-860.CrossrefGoogle Scholar

  • Wakabayashi H., Uchida K., Yamauchi K., Teraguchi S., Hayasawa H., Yamaguchi H., Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother., 2000, 46, 595-601.Google Scholar

  • Wakabayashi H., Yamauchi K., Takase M., Lactoferrin research, technology and applications. Int. Dairy J., 2006, 16, 1241-1251.CrossrefGoogle Scholar

  • Walzem R.L., Dillard C.J., German J.B., Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit Rev. Food Sci. Nut., 2002, 42, 353-375.CrossrefGoogle Scholar

  • Wang X., Hirmo S., Willen R., Wadstrom T., Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model. J Med. Microbiol., 2001, 50, 430-435.Google Scholar

  • Ward P.P., Uribe-Luna S., Conneely O.M., Lactoferrin and host defense. Biochem. Cell Biol., 2002, 80, 95-102.Google Scholar

  • Weinberg E.D., Acquisition of iron and other nutrients in vivo. 1995, in: Virulence Mechanisms of Bacterial Pathogens, 2nd ed. (eds. J. A. Roth, C. A. Bolin, K. A. Brogden, F. C. Minion, M.J. Wannemuehler). American Society for Microbiology, Washington, D.C., USA, pp. 79-93.Google Scholar

  • Whitney R.M., Proteins in milk. 1988, in: Fundamentals of Dairy Chemistry (eds. N.P. Wong, R. Jenness, M. Keeney, E.H. Marth). Van Nostrand Reinhold, New York, USA, pp. 89-92.Google Scholar

  • Yakabe T., Kawakami H., Idota T., Growth simulation agent for bifidus and lactobacillus. Jpn. Patent, 1994, 7267866.Google Scholar

  • Yamada Y., Amagasaki T., Jacobsen D. W., Green R., Lactoferrin binding by leukemia cell lines. Blood, 1987, 70, 264-270.PubMedGoogle Scholar

  • Yamauchi K., Biologically functional proteins of milk and peptides derived from milk proteins. Bull. Int. Dairy Fed., 1992, 272, 51-58.Google Scholar

  • Yamauchi K., Hiruma M., Yamazaki N., Wakabayashi H., Kuwata H., Teraguchi S., Hayasawa H., Suegara N., Yamaguchi H., Oral administration of bovine lactoferrin for treatment of tinea pedis. A placebo-controlled, double-blind study. Mycoses, 2000, 43, 197-202.CrossrefPubMedGoogle Scholar

  • Yamauchi K., Tomita M., Giehl T.J., Ellison R.T., Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Inf. Immun., 1993, 61, 719-728.Google Scholar

  • Ye X.Y., Wang H.X., Liu F., Ng T.B., Ribonuclease, cell-free translation-inhibitory and superoxide radical scavenging activities of the iron-binding protein lactoferrin from bovine milk. Int. J. Biochem. Cell. Biol., 2000, 32, 235-241.CrossrefPubMedGoogle Scholar

  • Yoo Y.C., Watanabe R., Koike Y., Mitobe M., Shimazaki K., Watanabe S., Azuma I., Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun., 1997, 237, 624-628.Google Scholar

  • Yoo Y.C., Watanabe S., Watanabe R., Bovine lactoferrin and lactoferricin inhibit tumor metastasis in mice. Adv. Exp. Med Biol., 1998, 443, 285-291.Google Scholar

  • Yu R.H., Schryvers A.B., Bacterial lactoferrin receptors: insight from characterizing the Moraxella bovis receptors. Biochem. Cell Biol., 2002, 80, 81-90.CrossrefGoogle Scholar

  • Yun S.S., Sugita-Konishi Y., Kumagai S., Yamauchi K., Glycomacropeptide from cheese whey protein concentrate enhances IgA production by lipopolysaccharide-stimulated murine spleen cells. Ann. Sci. Technol., 1996, 67, 458-462.Google Scholar

  • Yvon M., Beucher S., Guilloteau P., Huerou-Luron I.L., Corring T., Effects of caseinomacropeptide (CMP) on digestion regulation. Reprod. Nutr. Dev., 1994, 34, 527-537.PubMedCrossrefGoogle Scholar

  • Zakharova E.T., Shavlovski M.M., Bass M.G., Gridasova A.A., Pulina M.O., De Filippis V., Beltramini M., Di Muro P., Salvato B., Fontana A., Vasilyev V.B., Gaitskhoki V.S., Interaction of lactoferrin with ceruloplasmin. Arch. Biochem. Biophys., 2000, 374, 222-228.Google Scholar

  • Zhang Y.P., Shapiro P., Fluoride free dental remineralization. World Patent, 1998, 9852524.Google Scholar

About the article

Published Online: 2012-07-26

Published in Print: 2012-09-01

Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 62, Issue 3, Pages 125–142, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0053-9.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in