Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
See all formats and pricing
More options …

Bioactive Phenolic Compounds of Soybean (Glycine max cv. Merit): Modifications by Different Microbiological Fermentations

Montserrat Dueñas
  • Corresponding author
  • Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007-Salamanca, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teresa Hernández
  • Instituto de Ciencia y Tecnología de Alimentos y Nutrición, C.S.I.C., Juan de la Cierva 3, 28006-Madrid, Spain, Fax: 34–915644853
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Lamparski
  • Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 str., 10–747 Olsztyn Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isabel Estrella
  • Instituto de Ciencia y Tecnología de Alimentos y Nutrición, C.S.I.C., Juan de la Cierva 3, 28006-Madrid, Spain, Fax: 34–915644853
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rosario Muñoz
  • Instituto de Ciencia y Tecnología de Alimentos y Nutrición, C.S.I.C., Juan de la Cierva 3, 28006-Madrid, Spain, Fax: 34–915644853
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-20 | DOI: https://doi.org/10.2478/v10222-012-0060-x

In this work, the effect of solid-substrate fermentation with Aspergillus oryzae, Rhizopus oryzae and Bacillus subtilis of soybean seeds on bioactive phenolic compounds was studied. Among the analysed sample extracts several phenolic compounds, hydroxybenzoics, hydroxycinnamics and fl avonoids, such as fl avonols, fl avanones, isofl avones were identifi ed by HPLC-DAD-ESI/MS. The results obtained indicate that fermentation process carried out in seeds inoculated with different microorganisms produced signifi cant changes in fl avonoids and phenolic acids contents. A signifi cant increase in the content of phenolic acids was observed in the samples fermented with the different microorganisms with respect to soybean without fermentation and fermented naturally. Fermentation process produced also important changes in fl avonoids compounds, with a signifi cant formation in isofl avone aglycone contents such as daidzein, glycitein and genistein as a consequence of glucosidase activity of microorganism in this process, showing signifi cant differences (p<0.05) with respect to control. Therefore, this process was shown to be a good way to increase the phenolic content of soybean, which could confer health-promoting effects.

Keywords: soybean; fermentation; flavonoids; isoflavones; phenolic acids

  • 1. Akpapunam M.A., Achinewhu S.C., Effects of cooking, germination and fermentation on the chemical composition of Nigerian cowpea (Vigna unguiculata). Qual. Plant. Plant Foods Hum. Nutr., 1985, 35, 353-358.Google Scholar

  • 2. Alonso R., Aguirre A., Marzo F., Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem., 2000, 68, 159-165.Google Scholar

  • 3. Chang C.T., Hsu C.K., Chou S.T., Chen Y.C., Huang F.S., Chung Y.C., Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus. Int. J. Food Sci. Tech., 2009, 44, 799-806.Web of ScienceGoogle Scholar

  • 4. Cho K.M., Hong S.Y., Math R.K., Lee J.H., Kambiranda D.M., Kim J.M., Islam S.A., Yun M.G., Cho J.J., Lim W.L., Yun H.D., Biotransformation of phenolics (isofl avones, fl avanols and phenolic acids) during the fermentation of cheonggukjang by Bacilluspumilus HY1. Food Chem., 2009, 114, 413-419.Google Scholar

  • 5. Choi Y.M., Kim Y.S., Ra K.S., Suh H.J., Characteristics of fermentation and bioavailability of isofl avones in Korean soybean paste (doenjang) with application of Bacillus sp. KH-15. Int. J. Food Sci. Tech., 2007, 42, 1497-1503.Google Scholar

  • 6. Doblado R., Frías J., Muñoz R., Vidal-Valverde C., Fermentation of Vigna sinensis var. carilla fl ours by natural microfl ora and Lactobacillus species. J. Food Protect., 2003, 66, 2313-2320.Google Scholar

  • 7. Dueñas M., Fernández D., Hernández T., Estrella I., Muñoz R., Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifi cations by fermentation with natural microfl ora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 2005, 85, 297-304.Google Scholar

  • 8. Dueñas M., Hernández T., Estrella I., Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem., 2007a, 101, 90-97.Google Scholar

  • 9. Dueñas M., Hernández T., Estrella I., Infl uence of the action of exogenous enzymes on the polyphenolic composition of pea. Effect on the antioxidant activity. Eur. Food Res. Technol., 2007b, 225, 493-500.Web of ScienceGoogle Scholar

  • 10. Dueñas M., Hernández T., Estrella I., Fernández D., Germination as a process to increase the polyphenols content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food Chem., 2009, 117, 599-607.Google Scholar

  • 11. Fernández-Orozco R., Frías J., Muñoz R., Zielinski H., Piskula M.K., Kozlowska H., Vidal-Valverde C., Fermentation as a bioprocess to obtain functional soybean fl ours. J. Agric. Food Chem., 2007, 55, 8972-8979.Google Scholar

  • 12. Frías J., Vidal-Valverde C., Kozlowska H., Tabera J., Honke J., Hedley C.L., Natural fermentation of lentils. Infl uence of time, fl our concentration and temperature on the kinetics of monosaccharides, disaccharides and α-galatosides. J. Agric. Food Chem., 1996, 44, 579-584.Google Scholar

  • 13. Granito M., Torres A., Frías J., Guerra M., Vidal-Valverde C., Infl uence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol., 2005, 220, 176-181.Google Scholar

  • 14. Hendrich S., Murphy P.A., Isofl avones: source and metabolism. 2001, in: Handbook of Nutraceuticals and Functional Foods (ed. R.E.C. Wildman). Boca Raton FL, CRC Press, USA, pp. 55-75.Google Scholar

  • 15. Kim E.H., Kim S.H., Chung J.I., Chi H.Y., Kim J.A., Chung I.M., Analysis of phenolic compounds and isofl avones in soybean seeds [Glycine max (L) Merill] and sprouts grown under different conditions. Eur. Food Res. Technol., 2006a, 222, 201-208.Google Scholar

  • 16. Kim E.H., Kim S.H., Chung J.I., Chi H.Y., Kim J.A., Chung I.M., A correlation between the level of phenolic compounds and the antioxidant capacity in cooked-with-rice and vegetables soybean (Glycine max L.) varieties. Eur. Food Res. Technol., 2006b, 224, 259-270.Google Scholar

  • 17. Lee S.J., Kim J.J., Moon H.I., Ahn J.K., Chun S.Ch., Jung W.S., Lee O.K., Chung I.M., Analysis of isofl avones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. J. Agric. Food Chem., 2008, 56, 2751-2758.CrossrefGoogle Scholar

  • 18. Lee J.H., Jeon J.Y., Kim S.G., Kim S.H., Chun T., Imm J.Y., Comparative analyses of total phenols, fl avonoids, saponins and antioxidant activity in yellow soy beans and mung beans. Int. J. Food Sci. Tech., 2011, 46, 2513-2519.Web of ScienceGoogle Scholar

  • 19. Lin C.-H., Wei Y.-T., Chou C.-C., Enhanced antioxidant activity of soyben koji prepared with various fi lamentous fungi. Food Microbiol., 2006, 23, 628-633.CrossrefGoogle Scholar

  • 20. López-Amorós M.L., Hernández T., Estrella I., Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal., 2006, 19, 277-283.CrossrefGoogle Scholar

  • 21. Malencic D., Maksimovic Z., Popovic M., Niladinovic J., Polyphenol content and antioxidant activity of soybean seed extracts. Biores. Technol., 2008, 99, 6688-6691.Google Scholar

  • 22. Nagata C., Takatsuka N., Inaba S., Kawakawi N., Shimizu H., Effect of soymilk consumption on serum estrogen concentrations in premenopausal Japanese women. J. Natl. Cancer Inst., 1998, 90, 1830-1835.Google Scholar

  • 23. Otieno D.O., Shah N.P., Endogenous β-glucosidase and β-galactosidase activities from selected probiotic microorganisms and their role in isofl avone biotransformation in soymilk. J. Appl. Microbiol., 2007a, 103, 910-917.Web of ScienceGoogle Scholar

  • 24. Otieno D.O., Shah N.P., A comparison of changes in the transformation of isofl avones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous β-glucosidases. J. Appl. Microbiol., 2007b, 103, 601-612.Web of ScienceGoogle Scholar

  • 25. Pham T.T., Shah N.P., Hydrolysis of isofl avone glycosides in soy milk by β-galactosidase and β-glucosidase. J. Food Biochem., 2009, 33, 38-60.Web of ScienceGoogle Scholar

  • 26. Park Y.H., Alenscar S.M., Aguiar C.L., Mascrenhas H.A.A., Scamparini A.R.P., Conversion of malonyl β-glucoside isofl avones found in some cultivars of Brazilian soybeans. Ciênc. Tecnol. Aliment., 2002, 22, 130-135.Google Scholar

  • 27. Park Y.K., Lui M.C.Y., Aguiar C.L., Production of enriched isofl avone aglycones during processing of soy protein isolates and soy protein concentrates. 2003, in: IFT Annual Meeting Book of Abstracts. Chicago II. Institute of Food Technologists, pp. 215-221.Google Scholar

  • 28. Randhir R., Vattem D. Shetty K., Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innov. Food Sci. Emerg. Technol., 2004, 5, 235-244.CrossrefGoogle Scholar

  • 29. Ribeiro M.L.L., Mandarino J.M.G., Carrao-Panizzi M.C., De Oliveira M.C.N., Campo C.B.H., Nepomuceno A.L., Ida E.I., Isofl avone content and β-glucosidase activity in soybean cultivars of different maturity groups. J. Food Comp. Anal., 2007, 20, 19-24.CrossrefGoogle Scholar

  • 30. Rostagno M.A., Palma M., Barroso C.G., Pressurized liquid of isofl avones from soybeans. Anal. Chim. Acta, 2004. 522, 169-177.Google Scholar

  • 31. Setchell K.D.R., Cassidy A., Dietary isofl avones: biological effects and relevance to human health. J Nutr., 1999, 129 (suppl) 758S-767S.Google Scholar

  • 32. Setchell K.D.R., Brown N.M., Zimmer-Nechemias L., Brashear W.T., Wolfe B.E., Kirschner A.S., Heubi J.E., Evidence for lack of absorption of soy isofl avone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr., 2002, 76, 447-453.Google Scholar

  • 33. Setchell K.D.R., Brown N.M., Desai P.B., Ziummer-Nechimias L., Wolfe B., Jakate A.S., Creutizinger V., Heubi J.E., Bioavailability, disposition, and dose-response effects of soy isofl avones when consumed by healthy women at physiologically typical dietary intakes. J Nutr., 2003, 133, 1027-1035.Google Scholar

  • 34. Shahidi F., Naczk M., Phenolic compounds of major oilseeds and plant oils. 2004, in: Phenolics in Food and Nutraceuticals. CRC Press, Boca Raton, Florida, USA, pp. 83-103.Google Scholar

  • 35. Tsangalis D., Ashton J.F., Mcgill A.E.J., Shah N.P., Enzymatic transformation of isofl avone phytoestrogens in soymilk by β-glucosidase producing bifi dobacteria. J. Food Sci., 2002, 67, 3104-3113.Google Scholar

  • 36. Wardhani D.H., Vázquez J.A., Pandiella S.S., Mathematical modelling of the development of antioxidant activity in soybeans fermented with Aspergillus oryzae and Aspergillus awamori in the solid state. J. Agric. Food Chem., 2009, 57, 540-544.Google Scholar

  • 37. Wu Q., Wang M., Sciarappa W.J., Simon J.E., LC/UV/ESI-MS analysis of isofl avones in Edamame and Tofu soybeans. J. Agric. Food Chem., 2004, 52, 2763-2769.Google Scholar

  • 38. Xu B., Chang S.K.C., Characterization of phenolic substances and antioxidant properties of food soybeans grown in the North Dakota-Minnesota region. J. Agric. Food Chem., 2008, 56, 9102-9113.Google Scholar

  • 39. Yue X., Abdallah A.M., Xu Z., Distribution of isofl avones and antioxidant activities of soybean cotyledon, coat and germ. J. Food Process. Pres., 2010, 34, 795-806.Web of ScienceCrossrefGoogle Scholar

  • 40. Zamora A.F., Fields M.L., Nutritive quality of fermented cowpeas (Vigna sinensis) and chickpeas (Cicer arietinum). J. Food Sci., 1979, 44, 234-236.Google Scholar

About the article

Published Online: 2012-11-20

Published in Print: 2012-11-01

Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 62, Issue 4, Pages 241–250, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0060-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tatiane Scilewski da Costa Zanatta, Roberta Manica-Berto, Cristiano Dietrich Ferreira, Michele Maciel Crizel Cardozo, Cesar Valmor Rombaldi, Rui Carlos Zambiazi, and Álvaro Renato Guerra Dias
Journal of Agricultural and Food Chemistry, 2017, Volume 65, Number 13, Page 2661
Ana Bucić-Kojić, Gordana Šelo, Bruno Zelić, Mirela Planinić, and Marina Tišma
Applied Biochemistry and Biotechnology, 2017, Volume 181, Number 3, Page 948

Comments (0)

Please log in or register to comment.
Log in