Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Substances with Antibacterial Activity in Edible Films – A Review

Karolina Kraśniewska
  • Corresponding author
  • Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02–776 Warsaw, Poland
  • Email:
/ Małgorzata Gniewosz
  • Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02–776 Warsaw, Poland
Published Online: 2012-11-20 | DOI: https://doi.org/10.2478/v10222-12-0059-3

This article is an overview of literature addressing edible films and substances introduced to films in order to impart them the antimicrobial activity. It describes natural polymers applied for the production of food packages and active substances of natural origin added to them, including: bacteriocins, enzymes, oils, and plant extracts. Further discussion refers to chitosan - a polysaccharide used for film formation and characterised by strong antibacterial and antimycotic properties.

Keywords: edible films; antibacterial properties; chitosan

  • 1. Appendini P., Hotchkiss J.H., Immobilization of lysozyme on food contact polymer as potential antimicrobial fi lms. Packaging Technol. Sci., 1997, 10, 271-279.CrossrefGoogle Scholar

  • 2. Appendini P., Hotchkiss J.H., Review of antimicrobial food packaging. Innov. Food Sci. Em. Technol., 2002, 3, 113-126.Google Scholar

  • 3. Ayranci E., Tunç S., Cellulosed-based edible fi lms and their effects on fresh beans and strawberries. Z. Lebensm. Unters. Forsch. A., 1997, 205, 470-473.CrossrefGoogle Scholar

  • 4. Baron J., Sumner S., Antimicrobial containing edible fi lms as an inhibitory system to control microbial growth on meat products. J. Food Prot., 1993, 56, 916.Google Scholar

  • 5. Beverlya R.L., Janes M.E., Prinyawiwatkula W., No H.K., Edible chitosan fi lms on ready-to-eat roast beef for the control of Listeriamonocytogenes. Food Microbiol., 2008, 25, 534-537.CrossrefGoogle Scholar

  • 6. Biswas S.R., Ray P., Johnson M.C., Ray B., Infl uence of growth conditions on the production of a bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol., 1991, 57, 1265-1267.Google Scholar

  • 7. Bravin B., Peressini D., Sensidoni A., Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. J. Food Eng., 2006, 76, 280-290.CrossrefGoogle Scholar

  • 8. Burt S., Essential oils: their antimicrobial properties and potential applications in food - food review. Int. J. Food Microbiol., 2004, 94, 223-253.CrossrefGoogle Scholar

  • 9. Cagri A., Ustunol Z., Ryser E.T., Antimicrobial, mechanical and moisture barrier properties of low pH whey protein-based edible fi lms containing p-aminobenzoic or sorbic acid. J. Food Sci., 2001, 66, 865-870.CrossrefGoogle Scholar

  • 10. Cagri A., Ustunol Z., Ryser E.T., Inhibition of three pathogens on bologna and summer sausage slices using antimicrobial edible fi lms. J. Food Sci., 2002, 67, 2317-2324.CrossrefGoogle Scholar

  • 11. Cagri A., Ustunol Z., Ryser E.T., Antimicrobial edible fi lms and coatings. J. Food Prot., 2004, 67, 833-848.Google Scholar

  • 12. Carlin E., Gontard N., Reich M., Nguyen C., Utilization of zein coating and sorbic acid to reduce Listeria monocytogenes growth on cooked sweet corn. J. Food Sci., 2001, 66, 1385-1389.CrossrefGoogle Scholar

  • 13. Casariego A., Souza B.W.S., Vicente A.A., Teixeira J.A., Cruz L., Diaz R., Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocoll., 2008, 22, 1452-1459.CrossrefGoogle Scholar

  • 14. Cha D.S., Choi J.H., Chinnan M.S., Park H.J., Antimicrobial fi lm based on Na-alginate and ĸ-carrageenan. Lebensm. Wiss. Technol., 2002, 35, 715-719.CrossrefGoogle Scholar

  • 15. Cha D.S., Cooksey K., Chinnan M.S., Park H.J., Release of nisin from various heat-pressed and cast fi lms. Lebensm. Wiss. Technol., 2003, 36, 209-213.CrossrefGoogle Scholar

  • 16. Chandrapati S., O’Sullivan D.J., Procedure for quantifi able assessment of nutritional parameters infl uencing nisin production by Lactococcus lactis subsp. lactis. J. Biotechnol., 1998, 63, 229-233.Google Scholar

  • 17. Chen M.X., Yeh G.H.C., Chiang B.H.C., Antimicrobial and physicochemical properties of methylcellulose and chitosan fi lms containing a preservative. J. Food Process. Preserv., 1996, 20, 379-390.CrossrefGoogle Scholar

  • 18. Choi J.H., Choi W.Y., Cha D.S., Chinnan M.J., Park H.J., Lee D.S., Park J.M., Diffusivity of potassium sorbate in ĸ-carrageenan based antimicrobial fi lm. LWT-Food Sci. Technol., 2005, 38, 417-423.Google Scholar

  • 19. Coma V., Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci., 2008, 78, 90-103.CrossrefGoogle Scholar

  • 20. Coma V., Deschamps A., Martil-Gros A., Bioactive packaging materials from edible chitosan polymer-antimicrobial activity assessment on dairy-related contaminants. J. Food. Sci., 2003, 68, 2788-2792.CrossrefGoogle Scholar

  • 21. Coma V., Sebti I., Pardon P., Deschamps A., Pichavant F.H., Antimicrobial edible packaging based on cellulosic ethers, fatty acids and nisin incorporation to inhibit Listeria innocua and Staphylococcusaureus. J. Food Prot., 2001, 64, 470-475.Google Scholar

  • 22. Coupland J.N., Shaw N.B., Monahan F.J., O’Riordan E.D., O’Sullivan M., Modeling the effect of glycerol on moisture sorption behavior of whey protein edible fi lms. J. Food Eng., 2000, 43, 25-30.CrossrefGoogle Scholar

  • 23. Cutter C.N., Siragusa G.R., Reduction of Brochothrix thermosphacta on beef surfaces following immobilization of nisin in calcium alginate gels. Lett. Appl. Microbiol., 1996, 23, 9-12.CrossrefPubMedGoogle Scholar

  • 24. Daferera D.J., Ziogas B.N., Polissiou M.G., The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clovibacter michiganensis subsp. michiganensis. Crop Prot., 2003, 22, 39-44.CrossrefGoogle Scholar

  • 25. Devlieghere F., Vermeulen J., Debevere J., Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 2004, 21, 703-714.CrossrefGoogle Scholar

  • 26. Donhowe I.G., Fennema O., Water vapor and oxygen permeability of wax fi lms. J. Am. Oil Chem. Soc., 1993, 70, 867-873.CrossrefGoogle Scholar

  • 27. Dorman H.J.D., Deans S.G., Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88, 308-316.CrossrefGoogle Scholar

  • 28. Durango A.M., Soares N.F.F., Andrade N.J., Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Contr., 2006, 17, 336-341.CrossrefGoogle Scholar

  • 29. Dutta P.K., Tripathi S., Mehrotra G.K., Dutta J., Perspectives for chitosan based antimicrobial fi lms in food application. Food Chem., 2009, 114, 1173-1182.CrossrefGoogle Scholar

  • 30. Fuglsang C.C., Johansen C., Christgau S., Adler-Nissen J., Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci. Technol., 1995, 6, 390-396.CrossrefGoogle Scholar

  • 31. Gill A.O., Holley R.A., Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Res. Int., 2000, 33, 83-90.CrossrefGoogle Scholar

  • 32. Güçbilmez Ç.M., Yemenicioğlu A., Arslanoğlu A., Antimicrobial and antioxidant activity of edible zein fi lms incorporated with lysozyme, albumin proteins and disodium EDTA. Food Res. Int., 2007, 40, 80-91.CrossrefGoogle Scholar

  • 33. Helander I.M., Alakomi H-L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Gorris L.G.M., Von A., Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem., 1998, 46, 3590-3595.CrossrefGoogle Scholar

  • 34. Hirano S., Chitin and chitosan as novel biotechnological materials. Polym. Int., 1999, 48, 732-734.Google Scholar

  • 35. Hoffman K.L., Han I.Y., Dawson P.L., Antimicrobial effects of corn zein fi lms impregnated with nisin, lauric acid and EDTA. J. Food Prot., 2001, 64, 885-889.Google Scholar

  • 36. Kittur F.S., Kumar K.R., Tharanathan R.N., Functional packaging properties of chitosan fi lms. Z. Lebensm. Unters. Forsch. A., 1998, 206, 44-47.CrossrefGoogle Scholar

  • 37. Ko S., Janes M.E., Hettiarachchy N.S., Johnson M.G., Physical and chemical properties of edible fi lms containing nisin and their action against Listeria monocytogenes. J. Food Sci., 2001, 66, 1006-1011.CrossrefGoogle Scholar

  • 38. Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.J.E., A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 2001, 91, 453-462.CrossrefGoogle Scholar

  • 39. Lopez-Rubio A., Gavara R., Lagaron J.M., Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci. Technol., 2006, 17, 567-575.CrossrefGoogle Scholar

  • 40. Matan N., Rimkeeree H., Mawson A.J., Chompreeda P., Haruthaithanasan V., Parker M., Antimicrobial activity of cinnamon and clove oils under modifi ed atmosphere conditions. Int. J. Food Microbiol., 2006, 107, 180-185.Google Scholar

  • 41. Mecitoğlu Ç., Yemenicioğlu A., Arslanoğlu A., Elmaci Z.S., Korel F., Çetin A.E., Incorporation of partially purifi ed hen egg white lysozyme into zein fi lms for antimicrobial food packaging. Food Res. Int., 2006, 39, 12-21.CrossrefGoogle Scholar

  • 42. Min S., Rumsey T.R., Krochta J.M., Diffusion of the antimicrobial lysozyme from a whey protein coating on smoked salmon. J. Food Eng., 2008, 84, 39-47.CrossrefGoogle Scholar

  • 43. Min S., Han J.H., Harris L.J., Krochta J.M., Listeria monocytogenes inhibition by whey protein fi lms and coatings incorporating lysozyme. J. Food Prot., 2005a, 68, 2317-2325Google Scholar

  • 44. Min S., Harris L.J., Krochta J.M., Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein fi lms incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli 0157:H7. J. Food Sci., 2005b, 70, M332-M338.Google Scholar

  • 45. Min S., Harris L.J., Krochta J.M., Listeria monocytogenes inhibition by whey protein fi lms and coatings incorporating the lactoperoxidase system. J. Food Sci., 2005c, 70, M314-M324.Google Scholar

  • 46. Min S., Krochta J.M., Inhibition of Penicillium commune by edible whey protein fi lms incorporating lactoferrin, lactoferrin hydrolysate and lactoperoxidase system. J. Food Sci., 2005, 70, M87-M94.Google Scholar

  • 47. Ming X.T., Weber G.H., Ayres J.W., Sandine W. E., Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci., 1997, 62, 413-415.CrossrefGoogle Scholar

  • 48. No H.K., Park Y.N., Lee S.H., Meyers S., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74, 65-72.Google Scholar

  • 49. Nussinovitch A., Hershko V., Gellan and alginate vegetable coating. Carboh. Polym., 1996, 30, 185-192.Google Scholar

  • 50. Park H.J., Chinnan M.S., Shewfelt R.L., Edible corn-zein fi lm coatings to extend storage life of tomatoes. J. Food Proc. Preserv., 1994, 18, 317-331.CrossrefGoogle Scholar

  • 51. Pommet M., Redl A., Morel M.H., Guilbert S., Study of wheat gluten plasticization with fatty acids. Polymer, 2003, 44, 115-122.CrossrefGoogle Scholar

  • 52. Ponce A., Roura S., del Valle C.E., Moreira M.R., Antimicrobial and antioxidant activities of edible coating enriched with natural plant extracts: In vitro and in vivo studies. Postharv. Biol. Technol., 2008, 49, 294-300.CrossrefGoogle Scholar

  • 53. Pranoto Y., Salokhe V.M., Rakshit S.K., Physical and antibacterial properties of alginate-based edible fi lm incorporated with garlic oil. Food Res. Int., 2005, 38, 267-272.CrossrefGoogle Scholar

  • 54. Quintavalla S., Vicini L., Antimicrobial food packaging in meat industry. Meat Sci., 2002, 62, SI, 373-380.CrossrefGoogle Scholar

  • 55. Raybaudi-Massilia R.M., Mosqueda-Melgar J., Martin-Belloso O., Edible alginate - based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol., 2008, 121, 313-327.Google Scholar

  • 56. Redl A., Gontard N., Guilbert S., Determination of sorbic acid diffusivity in edible wheat gluten and lipid based fi lm. J. Food Sci., 1996, 61, 116-120.CrossrefGoogle Scholar

  • 57. Rico-Peña D.C., Torres J.A., Edible methylcellulose-based fi lms as moisture-impermeable barriers in sundae ice cream cones. J. Food Sci., 1990, 55, 1468-1469.CrossrefGoogle Scholar

  • 58. Rico-Peña D.C., Torres J.A., Sorbic acid and potassium sorbate permeability of an edible methylcellulose-palmitic acid fi lm: water activity and pH effects. J. Food Sci., 1991, 56, 497-499.CrossrefGoogle Scholar

  • 59. Saucedo-Pompa S., Rojas-Molina R., Aguilera-Carbó A.F., Saenz-Galindo A., Heliodoro de La Garza, Jasso-Cantú D., Aguilar C.N., Edible fi lm based on candelilla wax to improve the shelf life and quality of avocado. Food Res. Int., 2009, 42, 511-515.CrossrefGoogle Scholar

  • 60. Sebti I., Coma V., Active edible polysaccharide coating and interactions between solution coating compounds. Carboh. Polym., 2002, 49, 139-144.Google Scholar

  • 61. Seydim A.C., Sarikus G., Antimicrobial activity of whey protein based edible fi lms incorporated with oregano, rosemary and garlic essential oils. Food Res. Int., 2006, 39, 639-644.CrossrefGoogle Scholar

  • 62. Shahidi F., Arachchi J.K.V., Jeon Y.J., Food applications of chitin and chitosan. Trends Food Sci. Technol., 1999, 10, 37-51.CrossrefGoogle Scholar

  • 63. Shen X.L., Wu J.M., Chen Y., Zhao G., Antimicrobial and physical properties of sweet potato starch fi lms incorporated with potassium sorbate or chitosan. Food Hydrocoll., 2010, 24, 285-290.CrossrefGoogle Scholar

  • 64. Silveira M.F.A., Soares N.F.F., Geraldine N.J., Andrade N.J., Botrel D.A., Goncalves M.P.J., Active fi lm incorporated with sorbic acid on pastry dough conservation. Food Contr., 2007, 18, 1063-1067.CrossrefGoogle Scholar

  • 65. Sivarooban T., Hettiarachchy N.S., Johnson M.G., Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible fi lms. Food Res. Int., 2008, 41, 781-785.CrossrefGoogle Scholar

  • 66. Suyatma N.E., Copinet A., Tighzert L., Coma V., Mechanical and barrier properties of biodegradable fi lms made from chitosan and poly (lactic acid) blends. J. Polym. Environ., 2004, 12, 1-6.CrossrefGoogle Scholar

  • 67. Tharanathan R.N., Biodegradable fi lms and composite coatings: past, present and future. Trends Food Sci. Technol., 2003, 14, 71-78.CrossrefGoogle Scholar

  • 68. Torres J.A., Bouzas J.O., Karel M., Microbial stabilization of intermediate moisture food surfaces III. Effects of surface preservative concentration and surface pH control on microbial stability of an intermediate moisture cheese analog. J. Food Process. Preserv., 1985, 9, 107-119.CrossrefGoogle Scholar

  • 69. Trinetta V., Floros J.D., Cutter C.N., Sakacin A-containing pullulan fi lm: an active packaging system to control epidemic clones of Listeria monocytogenes in ready-to-eat foods. J. Food Safety, 2010, 30, 366-381.CrossrefGoogle Scholar

  • 70. Tunç S., Duman O., Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite fi lms and investigation of carvacrol release. LWT-Food Sci Technol., 2011, 44, 465-472.Google Scholar

  • 71. Vojdani F., Torres J.A., Potassium sorbate permeability of polysaccharide fi lms: chitosan, methylcellulose and hydroxypropyl methylcellulose. J. Food Proc. Eng., 1990, 12, 33-48.CrossrefGoogle Scholar

  • 72. Williams R., Mittal G.S., Water and fat transfer properties of polysaccharide fi lms on fried pastry mix. LWT - Food Sci. Technol., 1999, 32, 440-445.Google Scholar

  • 73. Xie L., Hettiarachchy N.S., Ju Z.Y., Meullenet J., Wang H., Slavik M.F., Janes ME., Edible fi lm coating to minimize eggshell breakage post-wash bacterial contamination measured by penetration in eggs. J. Food Sci., 2002, 67, 280-284.CrossrefGoogle Scholar

  • 74. Zhang D., Quantick P.C., Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharv. Biol. Technol., 1997, 12, 195-202.CrossrefGoogle Scholar

  • 75. Zheng L.Y., Zhu J.F., Study on antimicrobial activity of chitosan with different molecular weights. Carboh. Polym., 2003, 54, 527-530.Google Scholar

About the article

Published Online: 2012-11-20

Published in Print: 2012-11-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-12-0059-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in