Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Current Approaches for Enhanced Expression of Secondary Metabolites as Bioactive Compounds in Plants for Agronomic and Human Health Purposes – a Review

Sandra N. Jimenez-Garcia
  • Division de Estudios de Posgrado, C.A. Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, C.P. 76010, Santiago de Queretaro, Queretaro, Mexico
/ Moises A. Vazquez-Cruz
  • Division de Estudios de Posgrado, C.A. Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, C.P. 76010, Santiago de Queretaro, Queretaro, Mexico
/ Ramon G. Guevara-Gonzalez
  • Division de Estudios de Posgrado, C.A. Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, C.P. 76010, Santiago de Queretaro, Queretaro, Mexico
/ Irineo Torres-Pacheco
  • Division de Estudios de Posgrado, C.A. Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, C.P. 76010, Santiago de Queretaro, Queretaro, Mexico
/ Andres Cruz-Hernandez
  • Division de Estudios de Posgrado, C.A. Ingenieria de Biosistemas, Facultad de Ingenieria, Universidad Autonoma de Queretaro, C.U. Cerro de las Campanas S/N, Colonia Las Campanas, C.P. 76010, Santiago de Queretaro, Queretaro, Mexico
/ Ana A. Feregrino-Perez
  • Corresponding author
  • Facultad de Medicina, Universidad Autonoma de Queretaro, Clavel #200, Fraccionamiento Prados de la Capilla, C.P. 76176, Santiago de Queretaro, Queretaro, Mexico
  • Email:
Published Online: 2013-05-10 | DOI: https://doi.org/10.2478/v10222-012-0072-6

The study of secondary metabolism in plants is an important source for the discovery of bioactive compounds with a wide range of applications. Today these bioactive compounds derived from plants are important drugs such as antibiotics, and agrochemicals substitutes, they also have been economically important as flavors and fragrances, dyes and pigments, and food preservatives. Many of the drugs sold today are synthetic modifications of naturally obtained substances. There is no rigid scheme for classifying secondary metabolites, but they can be divided into different groups based on their chemical components, function and biosynthesis: terpenoids and steroids, fatty acid-derived substances and polyketides, alkaloids, phenolic compounds, non-ribosomal polypeptides and enzyme cofactors. The increasing commercial importance of these chemical compounds has resulted in a great interest in secondary metabolism, particularly the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology and metabolomics. In today’s world the use of bioactive compounds derived from plants plays an important role in pharmaceutical applications. This review presents information about these metabolites and their applications as well as their importance in agronomy and bioactive effects on human health as nutraceuticals. This review includes also the new tendencies to produce these bioactive compounds under different stresses conditions such as biotic and abiotic stress that could be included in production systems.

Keywords: bioactive compounds; biosynthetic pathway; allelopathic; crop; health effect

  • 1. Aires A., Mota V.R., Saavedra M.J., Rosa E., Bennett R., The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microb., 2009, 106, 2086-2095.CrossrefGoogle Scholar

  • 2. Angelova S., Buchheim M., Frowitter D., Schierhorn A., Roos W., Overproduction of alkaloid phytoalexins in California poppy cells is associated with the co-expression of biosynthetic and stress-protective enzymes. Mol. Plant, 2010, 3, 927-939.CrossrefGoogle Scholar

  • 3. Ashihara H., Sano H., Crozier A., Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 2008, 69, 841-856.CrossrefGoogle Scholar

  • 4. Ashraf M.M., Akram N.A., Arteca R.N., Foolad M.R., The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci., 2010, 29, 162-190.CrossrefGoogle Scholar

  • 5. Bassoli B.K., Cassolla P., Borba-Murad G.R., Constantin J., Salgueiro- Pagadigorria C.L., Bazotte R.B., Da Silva R.S., De Souza H.M., Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycemia. Cell Biochem. Funct., 2008, 26, 320-328.CrossrefGoogle Scholar

  • 6. Baumann T.W., Gabriel H., Metabolism and excretion of caffeine during germination of Coffea arabica L. Plant Cell Physiol., 1984, 25, 1431-1436.Google Scholar

  • 7. Bent A.F., Mackey D., Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol., 2007, 45, 399-436.CrossrefGoogle Scholar

  • 8. Bhattacharya A., Chattopadhyay A., Mazumdar D., Chakravarty A., Pal S., Antioxidant constituents and enzyme activities in chilli peppers. Int. J. Veg. Sci., 2010, 16, 201-211.CrossrefGoogle Scholar

  • 9. Bialczyk J., Latkowska E., Lechowski Z., Allelopathic effects of (+)-usnic acid on some phytohormone concentrations in tomato plants. Allelopathy J., 2011, 28, 115-122.Google Scholar

  • 10. Boller T., Felix G., A renaissance of elicitors: Perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant. Biol., 2009, 60, 379-406.CrossrefGoogle Scholar

  • 11. Brechner M.L., Albright L.D., Weston L.A., Effects of UV-B on secondary metabolites of St. John’s wort (Hypericum perforatum L.) grown in controlled environments. Photochem. Photobiol., 2011, 87, 680-684.CrossrefGoogle Scholar

  • 12. Brechner M.L., Some effects of light quantity and quality on secondary metabolites hyperforin, pseudohypericin and hypericin in Hypericum perforatum. 2008, Ph.D. Dissertation, Cornell University NY, pp. 141-142.Google Scholar

  • 13. Cameron S.I., Smith R.F., Kierstead K.E., Linking medicinal/nutraceutical products research with commercialization. Pharmac. Biol., 2005, 43, 425-433.CrossrefGoogle Scholar

  • 14. Canter P.H., Thomas H., Ernst E., Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol., 2005, 23, 180-185.CrossrefGoogle Scholar

  • 15. Chen F., Liu C., Tschaplinski T.J., Zhao N., Genomics of secondary metabolism in Populus: Interactions with biotic and abiotic environments. Crit. Rev. Plant Sci., 2009, 28, 375-392.CrossrefGoogle Scholar

  • 16. Cheng K., Lin J., Wu J., Liu W., Isoflavone conversion of black soybean by immobilized Rhizopus spp. Food Biotechnol., 2010, 24, 312-331.CrossrefGoogle Scholar

  • 17. Cote J.J., Caillet S.S., Doyon G.G., Sylvain J.F., Lacroix M.M. Analyzing cranberry bioactive compounds. Crit. Rev. Food Sci. Nutr., 2010, 50, 872-888.CrossrefGoogle Scholar

  • 18. Dombrecht B., Xue G.P., Sprague S.J., MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell, 2007, 19, 2225-2245.CrossrefGoogle Scholar

  • 19. Du H., Huang Y., Tang Y., Genetic and metabolic engineering of isoflavonoids biosynthesis. Appl. Microb. Biotechnol., 2010, 86, 1293-1312.CrossrefGoogle Scholar

  • 20. Evangelista Z.M., Moreno A.E., Metabolitos secundarios de importancia farmacéutica producidos por actinomicetos. Biotecnologia, 2007, 11, 37-50.Google Scholar

  • 21. Ferrari S., Biological elicitors of plant secondary metabolites: Mode of action and use in the production of nutraceutic. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 12, pp. 152-166.Google Scholar

  • 22. Fine P.V.A., Miller Z.J., Mesones I., Irazuzta S., Appel H.M., Stevens M.H.H., The growth defense trade-off and habitat specialization by plants in Amazonian forest. Ecology, 2006, 87, S150-S162.CrossrefGoogle Scholar

  • 23. Fucile G., Falconer S., Christendat D., Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS genetics, 2008, 4, e1000292, 1-6.CrossrefGoogle Scholar

  • 24. Fujisawa M., Watanabe M., Choi S.K., et al., Enrichment of carotenoids in flaxseeds (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J. Biosci. Bioeng, 2008, 105, 636-641.CrossrefGoogle Scholar

  • 25. Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K., Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant. Biol., 2006, 9, 436-442.CrossrefGoogle Scholar

  • 26. Genovese S., Curini M., Epifano F., Chemistry and biological activity of azoprenylated secondary metabolites. Phytochemistry, 2009, 70, 1082-1091.CrossrefGoogle Scholar

  • 27. George E.F., Hall M.A., De Klerk G.J., Plant Propagation by Tissue Culture: The Background. 2007, 3th Edition, Vol. 1, Springer, Berlin (Germany).Google Scholar

  • 28. Gientka I., Duszkiewicz-Reinhard W., Shikimate pathway in yeast cells: enzymes, functioning, regulation - review. Pol. J. Food Nutr. Sci, 2009, 59, 113-118.Google Scholar

  • 29. Gorovits R., Czoznek H., Biotic and abiotic stress responses in tomato breeding lines resistant and susceptible to tomato yellow leaf curl virus. 2007, in: Tomato Yellow Leaf Curl Virus Disease (ed. H. Czosnek). Springer, Chapter 6, pp. 223-237.Google Scholar

  • 30. Gottlieb O.R., Phytochemicals: differentiation and function. Phytochemistry, 1990, 29, 1715-1724.CrossrefGoogle Scholar

  • 31. Grindberg R.V., Ishoey T., Brinza D., Esquenazi E., Coates R., Wei-Ting L., Gerwick W.H., Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. Plos ONE, 2011, 6, e18565, 1-12.Google Scholar

  • 32. Grindberg R.V., Shuman C.F., Sorrels C.M., Wingerd J., Gerwick W.H., Neurotoxic alkaloids from cyanobacteria. 2007, in: Modern Alkaloids (ed. E. Fattorusso). POT-S, pp. 139-170.Google Scholar

  • 33. Gu X.-D., Sun M.Y., Zhang L., Fu H.W., Cui L., Chen R.Z., Zhang D.W., Tian J.K., UV-B induced changes in the secondary metabolites of Morus alba L. leaves. Molecules, 2010, 15, 2980- -2993.CrossrefGoogle Scholar

  • 34. Gunel T., Kuntz M., Arda N., Erturk S., Temizkan G., Metabolic engineering for production of geranylgeranyl pyrophosphate synthase in noncarotenogenic yeast Schizosaccharomyces pombe. Biotechnol. Biotechnol. Eq., 2006, 20, 76-82.CrossrefGoogle Scholar

  • 35. Helmja K., Vaher M., Gorbatsova J., Kaljurand M., Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. Proc. Estonian Acad. Sci. Chem., 2007, 56, 172-186.Google Scholar

  • 36. Holopainen J.K., Heijari J., Nerg A.M., Vuorinen M., Kainulainen P., Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. Open. For. Sci. J., 2009, 2, 17-24.Google Scholar

  • 37. Hounsome N., Hounsome B., Tomos D., Edwards-Jones G., Plant metabolites and nutritional quality of vegetables. J. Food Sci., 2008, 73, P48-P65.Google Scholar

  • 38. Hussain S., Fareed S., Ansari S., Rahman A., Iffat-Zareen A., Saeed M., Current approaches toward production of secondary plant metabolites. J. Pharm. Bioall. Sci., 2012, 4, 10-20.CrossrefGoogle Scholar

  • 39. Ibrahim M.H., Jaafar H.Z.E, Rahmat A., Abdul R.Z., Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip Fatimah (Labisia pumila Blume). Int. J. Mol. Sci., 2011, 12, 5238-5254.CrossrefGoogle Scholar

  • 40. Iriti M., Faoro F. Chemical diversity and defense metabolism: how plants cope with pathogens and ozone pollution. Int. J. Mol. Sci., 2009, 10, 3371-3399.CrossrefGoogle Scholar

  • 41. Jeong C.S., Chakrabarty D., Hahn E.J., Lee H.L., Paek K.Y., Effects of oxygen, carbon dioxide and ethylene on growth and bioactive compound production in bioreactor culture of ginseng adventitious roots. Biochem. Eng. J., 2006, 27, 252-263.CrossrefGoogle Scholar

  • 42. John J., Sarada S.S., Role of phenolics in allelopathic interactions. Allelopathy J., 2012, 29, 215-229.Google Scholar

  • 43. Kazan K., Manners J.M., Jasmonate signaling: toward an integrated view. Plant Physiol., 2008, 146, 1459-1468.CrossrefGoogle Scholar

  • 44. Khadem S., Marles R.J., Chromone and flavonoid alkaloids: Occurrence and bioactivity. Molecules, 2012, 17, 191-206. Google Scholar

  • 45. Kotilainen T., Tegelberg R., Julkunen-Tiitto R., Lindfors A., Aphalo P.J., Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Global Change Biology, 2008, 14, 1294-1304.CrossrefGoogle Scholar

  • 46. Krzyzanowska J., Czubacka A., Oleszek W., Dietary phytochemicals and human health. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 7, pp. 74-99.Google Scholar

  • 47. Latkowska E., Lechowski Z., Białczyk J., Responses in tomato roots to stress caused by exposure to (+)-usnic acid. Allelopathy J., 2008, 21, 239-252.Google Scholar

  • 48. Lattanzio V., Lattanzio V.M.T., Cardinali A., Role of phenolic in the resistance mechanisms of plants against fungal pathogens and insects. 2006, in: Phytochemistry: Advances in Research (ed. F. Imperato). Research Signpost, Kerala, India, pp. 23-67.Google Scholar

  • 49. Le Gall G., DuPont M.S., Mellon F.A., Davis A.L., Collins G.J., Verhoeyen M.E., Colquhoun I.J., Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersiconesculentum) fruits. J. Agric. Food. Chem., 2003, 51, 2438- -2446.CrossrefGoogle Scholar

  • 50. Lee J.S., Latimer L.J., Hampel K.J. Coralyne binds tightly to both T.A.T. - and C. G. C. (+)-containing DNA triplexes. Biochemistry, 1993, 32, 5591-5597.CrossrefGoogle Scholar

  • 51. Leflaive J., Ten-Hage L., Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol., 2007, 52, 199-214.CrossrefGoogle Scholar

  • 52. Lessard P., Metabolic engineering: the concept coalesces. Nat. Biotechnol., 1996, 14, 1654-1655.CrossrefGoogle Scholar

  • 53. Li Q., Kubota Ch., Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Env. Exp. Botany, 2009, 67, 59-64.CrossrefGoogle Scholar

  • 54. Liu W.K., Xu S.X., Che C.T., Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci., 2000, 67, 1297-1306.CrossrefPubMedGoogle Scholar

  • 55. Lucchesini M., Bertoli A., Mensuali-Sodi A., Pistelli L., Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Sci. Hortic., 2009, 122, 484-490.CrossrefGoogle Scholar

  • 56. Lucchesini M., Mensuali-Sodi A., Plant tissue culture - an opportunity for the production of nutraceuticals. 2010, in: Bio- Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 14, pp. 186-202.Google Scholar

  • 57. Lucchesini M., Monteforti G., Mensuali S.A., Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions. Biologia Plantarum, 2006, 50, 161-168.CrossrefGoogle Scholar

  • 58. Magalhães S.T.V., Guedes R.N.C., Demuner A.J., Lima E.R., Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. B. Entom. Res., 2008, 98, 483-489.Google Scholar

  • 59. Matsufuji H., Ishikawa K., Nunomura O., Chino M., Takeda M., Anti-oxidant content of different colored sweet peppers, white, green, yellow, orange and red (Capsucum annuum L.). Int. J. Food Sci. Tech., 2007, 42, 1482-1488.CrossrefGoogle Scholar

  • 60. Mattoo A.K., Shukla V., Fatima T., Handa A.K., Yachha S.K., Genetic engineering to enhance crop-based phytonutrients (Nutraceiticals) to alleviate diet-related diseases. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 10, pp. 123-143.Google Scholar

  • 61. Mazid M., Khan T., Mohammad F., Effect of abiotic stress on synthesis of secondary plant products: A Critical Review. Agric. Rev., 2011, 32, 172-182.Google Scholar

  • 62. Mejia-Teniente, L., Torres-Pacheco I., Gonzalez-Chavira M.M., Ocampo-Velazquez R.V., Herrera-Ruiz G., Chapa- Oliver A.M., Guevara-Gonzalez R.G., Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotech., 2010, 9, 9155-9162.Google Scholar

  • 63. Morales L.O., Tegelberg R., Brosché M., Keinänen M., Lindfors A., Aphalo P.J., Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol., 2010, 30, 923-934.CrossrefGoogle Scholar

  • 64. Newman D.J., Cragg G.M., Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70, 461-477.CrossrefGoogle Scholar

  • 65. Niraula N.P., Kim S.H., Sohng J.K., Kim E.S., Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl. Microbiol. Biotechnol., 2010, 87, 1187-1197.CrossrefGoogle Scholar

  • 66. Nunnery J.K., Mevers E., Gerwick W.H., Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol., 2010, 21, 787-793.CrossrefGoogle Scholar

  • 67. Oldiges M., Lütz S., Pflug S., Schroer K., Stein N., Wiendahl C., Metabolomics: current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol., 2007, 76, 495-511.CrossrefPubMedGoogle Scholar

  • 68. Oswald M., Fischer M., Dirninger N., Karst F., Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res., 2007, 7, 413-421.CrossrefGoogle Scholar

  • 69. Paiva P.M.G., Gomes F.S., Napoleão T.H., Sá R.A., Correia M.T.S., Coelho C.B.B., Antimicrobial activity of secondary metabolites and lictins from plants. Res. Technol. Edu. Top. Appl. Microb. Biotechnol., 2010, 396-406 [http://www.formatex.info/ microbiology2/396-406.pdf].Google Scholar

  • 70. Parsaeimehr A., Sargsyan E., Vardanyan A., Expression of secondary metabolites in plants and their useful perspective in animal health. ABAH Bioflux, 2011, 3, 115-124.Google Scholar

  • 71. Peterhansel C., Niessen M., Kebeish R.M., Metabolic Engineering towards the enhancement of photosynthesis. Photochem. Photobiol., 2008, 84, 1317-1323.CrossrefGoogle Scholar

  • 72. Prasanna R., Sood A., Jaiswal P., Nayak S., Gupta V., Chaudhary V., Joshi M., Natarajan C., Rediscovering cyanobacteria as valuable sources of bioactive compounds (Review). Appl. Biochem. Microbiol., 2010, 46, 119-134.CrossrefGoogle Scholar

  • 73. Rea G., Antonacci A., Lambreva M., Margonelli A., Ambrosi C., Giardi M.T., The NUTRASNACKS Project: Basic research and biotechnological programs on nutraceutical. 2010, in: Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors (eds. M.T. Giardi, G. Rea, B. Berra). Springer US, Vol. 698, Chapter 1, pp. 1-16.Google Scholar

  • 74. Rippert P., Puyaubert J., Grisollet D., Derrier L., Matringe M., Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol., 2009, 149, 1251-1260.CrossrefGoogle Scholar

  • 75. Rodríguez-Burruezo A., Prohens J., Raigón M. D., Nuez F., Variation for bioactive compounds in aji (C. pubencens R. & P.) and implications for breeding. Euphytica, 2009, 170, 169-181.CrossrefGoogle Scholar

  • 76. Rohmer M., The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 1999, 16, 565-574. CrossrefGoogle Scholar

  • 77. Sainis I., Fokas D., Vareli K., Tzakos A. G., Kounnis V., Briasoulis E., Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar. Drugs, 2010, 8, 629-657.CrossrefGoogle Scholar

  • 78. Satwadhar P.N., Deshpande H.W., Syed I.H., Syed K.A., Nutritional compounds and identification of some of the bioactive compounds in Morinda citrifolia juice. Int. J. Pharm. Pharm. Sci., 2011, 3, 58-59.Google Scholar

  • 79. Saviranta H.K., Julkunen-Tiitto R., Oksanen E., Karjalainen R.O., Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Env. Poll., 2010, 158, 440-446.CrossrefGoogle Scholar

  • 80. Schijlen E., Ric deVos C.H., Jonker H., Broeck H.V.D., Molthoff J., vanTunen A.V, Martens S., Bovy A., Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J., 2006; 4, 433-444.CrossrefGoogle Scholar

  • 81. Schmeltz I., Nicotine and other tobacco alkaloids. 1971, in: Naturally Occurring Insecticides (eds. M. Jacobson, D.G. Crosby). Marcel Dekker, New York, pp. 99-136.Google Scholar

  • 82. Shilpa K.K., Varun K.K., Lakshmi B.S., An alternate method of natural drug production: eliciting secondary metabolite production using plant cell culture. J. Plant Sci., 2010, 5, 222-247.Google Scholar

  • 83. Siddiqui M.S., Thodey K., Trenchard I., Smolke C.D., Advancing secondary metabolites I yeast with synthetic biology tools. FEMS Yeast Res., 2012, 12, 144-170.CrossrefGoogle Scholar

  • 84. Spoel H.S., Dong X., How do plants achieve immunity? Defense without specialized immune cells. Nature Rev. Immunol., 2012, 12, 89-100.CrossrefGoogle Scholar

  • 85. Sun T., Xu Z., Wu C.T., Janes W., Prinyawiwatkul W., No H.K., Antioxidant activities of different colored sweet bell pepper (Capsicumannuum L.). J. Food Sci., 2007, 72, S98-S102.CrossrefGoogle Scholar

  • 86. Tyagi S., Singh U., Kalra T., Munjal K., Applications of metabolomics - a systematic study of the unique chemical fingerprints: an overview. Int. J. Pharm. Sci. Rev. Res., 2010, 3, 83-86.Google Scholar

  • 87. Vanamala J., Leonardi T., Patil B.S., Taddeo S.S., Murphy M.E., Pike L.M., Chapkin R.S., Lupton J.R., Turner N.D., Suppression of colon carcinogenesis by bioactive compounds in grapefruit. Carcinogenesis, 2006, 27, 1257-1265.CrossrefGoogle Scholar

  • 88. Verhoeyen M.E., Bovy A., Collins G., Muir S., Robinson S., de Vos C.H.R., Colliver S., Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot., 2002, 53, 2099-2106.CrossrefGoogle Scholar

  • 89. Victório C., Leal-Costa M., Schwartz Tavares E., Machado Kuster R., Salgueiro Lage C., Effects of supplemental UV-A on the development, anatomy and metabolite production of Phyllanthustenellus cultured in vitro. Photochem. Photobiol., 2011 87, 685-689.CrossrefGoogle Scholar

  • 90. Vogt T., Phenylpropanoid biosynthesis. Mol. Plant, 2010, 3, 2-20.CrossrefGoogle Scholar

  • 91. Wan Ch., Yu Y., Zhou S., Tian S., Cao S., Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacognosy Magazine, 2011, 7 (26), 101-108.Google Scholar

  • 92. Winks M., Schimmer O., Modes of action of defensive secondary metabolites. Function of Plant SMs and their exploitation in biotechnology. Annu. Plant Rev., 1999, 17-133.Google Scholar

  • 93. Xu M., Dong J., Wang H., Huang L., Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitorinduced flavonol glycoside accumulation of Ginkgo biloba cells. Plant Cell Env., 2009, 32, 960-967.CrossrefGoogle Scholar

  • 94. Yadav S., Sinha R.P., Tyagi M.B., Kumar A., Cyanobacterial secondary metabolites. Int. J. Pharm. Bio. Sci., 2011, 2, B144- -B167.Google Scholar

  • 95. Yamada T., Matsuda F., Kasai K., Fukuoka S., Kitamura K., Tozawa Y., Miyagawa H., Wakasa K., Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell, 2008, 20, 1316-1329.CrossrefGoogle Scholar

  • 96. Yan Y.J.., Kohli A., Koffas M.A.G., Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 2005, 71, 5610-5613.CrossrefGoogle Scholar

  • 97. Yao L.H., Jiang Y.M., Shi J., Tomas-Barberan F.A., Datta N., Singanusong R., Chen S.S., Flavonoids in food and their health benefits. Plant Foods Human Nutr., 2004, 59, 113-122.Google Scholar

  • 98. Yu B., Lydiate D.J., Young L.W., Enhancing the carotenoid content of Brassica napus seeds by down regulating lycopene epsilon cyclase. Transg. Res., 2008, 17, 573-585.CrossrefGoogle Scholar

  • 99. Zhang J., Shi J., Ilic S., Jun X.S., Kakuda Y., Biological properties and characterization of lectin from red kidney bean (Phaseolusvulgaris). Food Rev. Int., 2009, 25, 12-27.Google Scholar

  • 100. Li Z.H., Wang Q., Ruan X., Pan C.D., Jiang D.A., Phenolics and plant allelopathy. Molecules, 2010, 15, 8933-8952.CrossrefGoogle Scholar

About the article

Published Online: 2013-05-10

Published in Print: 2013-06-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0072-6.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in