Jump to ContentJump to Main Navigation
Show Summary Details

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR increased in 2015: 0.679

SCImago Journal Rank (SJR) 2015: 0.345
Source Normalized Impact per Paper (SNIP) 2015: 0.516
Impact per Publication (IPP) 2015: 0.756

Open Access
Online
ISSN
2083-6007
See all formats and pricing

5-Hydroxymethyl-2-Furfural (HMF) – Heat-Induced Formation, Occurrence in Food and Biotransformation – a Review

Stanisław Kowalski
  • Corresponding author
  • Department of Carbohydrate Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
  • Email:
/ Marcin Lukasiewicz
  • Department of Carbohydrate Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
/ Aleksandra Duda-Chodak
  • Department of Fermentation Technology and Technical Microbiology, University of Agriculture in Krakow, ul. Balicka 122, 30–149 Krakow, Poland
/ Gabriela Zięć
  • Department of Carbohydrate Technology, University of Agriculture in Krakow, ul. Balicka 122, 30–149 Krakow, Poland
Published Online: 2013-11-27 | DOI: https://doi.org/10.2478/v10222-012-0082-4

Abstract

The chemical structure of 5-hydroxymethyl-2-furfural (HMF), its physicochemical properties and reactions that lead to the synthesis of HMF were discussed. Special attention was paid to HMF formation in food during processing. The potential applications of this compound in industry were described as well. Moreover, this review outlines the most important sources of HMF in human diet and estimates the potential daily intake of HMF by consumers. The known and suggested metabolic pathways, as well as the impact of HMF and its metabolites on human health are also discussed.

Keywords: 5-hydroxymethyl-2-furfural (HMF); HMF synthesis; biotransformation; HMF metabolism; impact on health; heat indicator

  • 1. Abdulmalik O., Safo M.K., Chen Q., Yang J., Brugnara C., Ohene-Frempong K., Abraham D.J., Asakura T., 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 2005, 128, 552-561.

  • 2. Aeschbacher H.U., Chappuis C., Manganel M., Aeschbach R., Investigation of Maillard products in bacterial mutagenicity test systems. Prog. Food Nutr. Sci., 1981, 5, 279-293.

  • 3. Akıllıoglu G., Mogol B.A., Gökmen V., Degradation of 5-hydroxymethylfurfural during yeast fermentation. Food Addit. Contam., 2011, 28, 1629-1635.

  • 4. Aktar Hossain S., Pal P.K., Sarkar P.K., Patil G.R., Sensory characteristics of dudh churpi in relation to its chemical composition. Z. Lebensm. Unters. Forsch., 1999, 208, 178-182. [Crossref]

  • 5. Albala-Hurtado S., Veciana-Nogues M.T., Marine-Font A., Vidal- Carou M.C., Changes in furfural compounds during storage of infant milks. J. Agric. Food Chem., 1998, 46, 2998-3003. [Crossref]

  • 6. Ameur L.A., Mathieu O., Lalanne V., Trystram G., Birlouez- -Aragon I., Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chem., 2007, 101, 1407-1416. [Crossref]

  • 7. Antal M.J., Mok W.S.L., Richards G.N., Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from -fructose and sucrose. Carbohydr. Res., 1990, 199, 91-109.

  • 8. Arribas-Lorenzo G., Morales F.J., Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food Chem. Toxicol., 2010, 48, 644-649. [Crossref]

  • 9. Ashry, E.S.H.E. (Ed.),. Heterocycles from Carbohydrate Precursors, Berlin 2007, Springer Verlag.

  • 10. Bakhiya N., Monien B., Frank H., Seidel A., Glatt H., Renal organic anion transporters OAT1 and OAT3 mediate the cellular accumulation of 5-sulfooxymethylfurfural, a reactive, nephrotoxic metabolite of the Maillard product 5-hydroxymethylfurfural. Biochem. Pharmacol., 2009, 78, 414-419. [Crossref]

  • 11. Bartákova K., Dračková M., Borkovcová I., Vorlova L., Impact of microwave heating on hydroxymethylfurfural content in Czech honeys. Czech J. Food Sci., 2011, 29, 328-336.

  • 12. Belitz H.-D., Grosch W., Schieberle P., Food Chemistry. 2009, 4th ed. Springer, Berlin Heidelberg.

  • 13. Boopathy R., Bokang H., Daniels L., Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol., 1993, 11, 147-150. [Crossref]

  • 14. Brands C.M.J., van Boekel M.A.J.S., Kinetic modelling of reactions in heated disaccharide-casein systems. Food Chem., 2003, 83, 13-26. [Crossref]

  • 15. Brands C.M.J., van Boekel M.A.J.S., Reactions of monosaccharides during heating of sugar−casein systems: Building of a reaction network model. J. Agric. Food Chem., 2001, 49, 4667-4675. [Crossref]

  • 16. Burdurlu H.S., Karadeniz F., Effect of storage on nonenzymatic browning of apple juice concentrates. Food Chem., 2003, 80, 91-97. [Crossref]

  • 17. Cais-Sokolinska D., Pikul J., Dankow R., Measurement of colour parametrs as an index of the hydroxymethylfurfural content in the UHT sterilised milk during its storage. EJPAU, 2004, 7.

  • 18. Capuano E., Ferrigno A., Acampa I., Serpen A., Açar Ö.Ç., Gökmen V., Fogliano V., Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Res. Int., 2009, 42, 1295-1302. [Crossref]

  • 19. Capuano E., Fogliano V., Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Sci. Technol., 2011, 44, 793-810. [Crossref]

  • 20. Chen L., Huang H., Liu W., Peng N., Huang X., Kinetics of the 5-hydroxymethylfurfural formation reaction in Chinese rice wine. J. Agric. Food Chem., 2010, 58, 3507-3511. [Crossref]

  • 21. Corma A., Iborra S., Velty A., Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107, 2411-2502. [Crossref]

  • 22. Council Directive, 2001. Council Directive of 20 December relating to honey 2001/110/EC, Official Journal of the European Communities.

  • 23. del Campo G., Berregi I., Caracena R., Zuriarrain J., Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta, 2010, 81, 367-371. [Crossref]

  • 24. Delgado-Andrade C., Morales F.J., Seiquer I., Pilar Navarro M., Maillard reaction products profile and intake from Spanish typical dishes. Food Res. Int., 2010, 43, 1304-1311. [Crossref]

  • 25. Delgado-Andrade C., Seiquer I., Navarro M.P., Morales F.J., Estimation of hydroxymethylfurfural availability in breakfast cereals. Studies in Caco-2 cells. Food Chem. Toxicol., 2008, 46, 1600-1607. [Crossref]

  • 26. Ding X., Wang M.-Y., Yao Y.-X., Li G.-Y., Cai B.-C., Protective effect of 5-hydroxymethylfurfural derived from processed FructusCorni on human hepatocyte LO2 injured by hydrogen peroxide and its mechanism. J. Ethnopharmacol., 2010, 128, 373-376. [Crossref]

  • 27. Du Y., Pan K., Zhang W., Yan X., Hong J., 5-(hydroxymethyl) furfural and derivatives as inhibitors of TNFalpha and IL-1beta production. US patent, No 2005/0124684 A1, 2005

  • 28. Durling L.J.K., Busk L., Hellman B.E., Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol., 2009, 47, 880-884. [Crossref]

  • 29. Escriche I., Visquert M., Carot J.M., Domenech E., Fito P., Effect of honey thermal conditions on hydroxymethylfurfural content prior to pasteurization. Food Sci. Technol. Int., 2008, 14, 29-35. [Crossref]

  • 30. Fallico B., Arena E., Zappala M., Degradation of 5-hydroxymethylfurfural in honey. J. Food Sci., 2008, 73, C625-C631. [Crossref]

  • 31. Fallico B., Arena E., Zappalà M., Roasting of hazelnuts. Role of oil in colour development and hydroxymethylfurfural formation. Food Chem., 2003, 81, 569-573. [Crossref]

  • 32. Fallico B., Zappalà M., Arena E., Verzera A., Effects of conditioning on HMF content in unifloral honeys. Food Chem., 2004, 85, 305-313. [Crossref]

  • 33. Fernandez-Artigas P., Guerra-Hernandez E., Garcia-Villanova B., Browning indicators in model systems and baby cereals. J. Agric. Food Chem., 1999, 47, 2872-2878. [Crossref]

  • 34. Florin I., Rutberg L., Curvall M., Enzell C.R., Screening of tobacco smoke constituents for mutagenicity using the Ames’ test. Toxicology, 1980, 15, 219-232. [Crossref]

  • 35. Fox P.F., Advanced Dairy Chemistry, Volume 3: Lactose, Water, Salts and Vitamins, 1992, 2nd ed. Springer.

  • 36. Friedman M., Food browning and its prevention: An overview. J. Agric. Food Chem., 1996 44, 631-653. [Crossref]

  • 37. Gentry T.S., Roberts J.S., Formation kinetics and application of 5-hydroxymethylfurfural as a time-temperature indicator of lethality for continuous pasteurization of apple cider. Innov. Food Sci. Emerg., 2004, 5, 327-333. [Crossref]

  • 38. Germond J.-E., Philippossian G., Richli U., Bracco I., Arnaud M.J., Rapid and complete urinary elimination of [14C]-5-hydroxymethyl-2-furaldehyde administered orally or intravenously to rats. J. Toxicol. Environ. Health, 1987, 22, 79-89. [Crossref]

  • 39. Ghorpade V.M., Hanna M.A, Method and apparatus for production of levulinic acid via reactive extrusion. US patent No 5859263, 1999.

  • 40. Gidamis A.B., Chove B.E., Shayo N.B., Nnko S.A., Bangu N.T., Quality evaluation of honey harvested from selected areas in Tanzania with special emphasis on hydroxymethyl furfural (HMF) levels. Plant Foods Hum. Nutr., 2004, 59, 129-132.

  • 41. Girisuta B., Janssen L.P.B.M., Heeres H.J., Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chem. Eng. Res. Des., 2006, 84, 339-349. [Crossref]

  • 42. Godfrey V.B., Chen L.-J., Griffin R.J., Lebetkin E.H., Burka L.T., Distribution and metabolism of (5-hydroxymethyl)furfural in male F344 rats and B6C3F1 mice after oral administration. J. Toxicol. Environ. Health , Part A: Current Issues, 1999, 57, 199-210.

  • 43. Gökmen V., Açar Ö.Ç., Arda S., Francisco J.M., Effect of leavening agents and sugars on the formation of hydroxymethylfurfural in cookies during baking. Eur. Food Res. Technol., 2008, 226, 1031-1037. [Crossref]

  • 44. Gökmen V., Açar Ö.Ç., Köksel H., Acar J., Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem., 2007, 104, 1136-1142. [Crossref]

  • 45. Gökmen V., Şenyuva H.Z., Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system. Eur. Food Res. Technol., 2007, 225, 815-820.

  • 46. Hadi S.M., Shahabuddin R.A., Specificity of the interaction of furfural with DNA. Mutat. Res., 1989, 225, 101-106.

  • 47. Haynes W.M., CRC Handbook of Chemistry and Physics, 2010, 91st ed. CRC Press.

  • 48. Heinze T., Barsett H., Ebringerová A., Harding S.E., Heinze T., Hromádková Z., Muzzarelli C., Muzzraelli R.A.A., Paulsen B.S., El Seoud O.A., Polysaccharides I: Structure, Characterisation and Use. 2005. 1st ed. Springer.

  • 49. Hidalgo A., Pompei C., Hydroxymethylfurfural and furosine reaction kinetics in tomato products. J. Agric. Food Chem., 2000, 48, 78-82. [Crossref]

  • 50. Hiramoto K., Sekiguchi K., Ayuha K., Aso-o R., Moriya N., Kato T., Kikugawa K., DNA breaking activity and mutagenicity of soy sauce: characterization of the active components and identification of 4-hydroxy-5-methyl-3(2H)-furanone. Mutat. Res.-Envir. Muta., 1996, 359, 119-132.

  • 51. Hoydonckx H.E. et al., Furfural and Derivatives., in Wiley-VCH Verlag GmbH & Co. KGaA, ed. Ullmann’s Encyclopedia of Industrial Chemistry. 2007, Weinheim, Germany: Wiley-VCH.

  • 52. Husoy T., Haugen M., Murkovic M., Jobstl D., Stolen L.H., Bjellaas T., Ronningborg C., Glatt H., Alexander J., Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure. Food Chem. Toxicol., 2008, 46, 3697-3702. [Crossref]

  • 53. Ibarz A., Pagán J., Garza S., Kinetic models for colour changes in pear puree during heating at relatively high temperatures. J. Food Eng., 1999, 39, 415-422. [Crossref]

  • 54. Ichikawa M., Yamamoto K., Tanaka A., Swaminathan S., Hatcher J.F., Erturk E., Bryan G.T., Mutagenicity of 3,4-diphenyl- -5-nitrofuran analogs in Salmonella typhimurium. Carcinogenesis, 1986, 7, 1339 -1344. [Crossref]

  • 55. Jansson T., Curvall M., Hedin A., Enzell C.R., In vitro studies of biological effects of cigarette smoke condensate: II. Induction of sister-chromatid exchanges in human lymphocytes by weakly acidic, semivolatile constituents. Mutat. Res.-Genet. Tox., 1986, 169, 129-139. [Crossref]

  • 56. Janzowski C., Glaab V., Samimi E., Schlatter J., Eisenbrand G., 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA- -damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol., 2000, 38, 801-809. [Crossref]

  • 57. Jellum E., Børresen H.C., Eldjarn L., The presence of furan derivatives in patients receiving fructose-containing solutions intravenously. Clin. Chim. Acta, 1973, 47, 191-201. [Crossref]

  • 58. Jing Q., Lu X., Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chinese J. Chem. Eng., 2008, 16, 890-894. [Crossref]

  • 59. Kabyemela B.M., Adschiri T., Malaluan R.M., Arai K., Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind. Eng. Chem. Res., 1997, 36, 1552-1558. [Crossref]

  • 60. Kasai H., Kumeno K., Yamaizumi Z., Nishimura S., Nagao M., Fujita Y., Sugimura T., Nukaya H., Kosuge T., Mutagenicity of methylglyoxal in coffee. Jpn. J. Cancer. Res., 1982, 73, 681-683.

  • 61. Khalil M.I., Sulaiman S.A., Gan S.H., High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol., 2010, 48, 2388-2392. [Crossref]

  • 62. Kim H.-J., Richardson M., Determination of 5-hydroxymethylfurfural by ion-exclusion chromatography with UV detection. J. Chromatogr. A, 1992, 593, 153-156.

  • 63. Koopman F., Wierckx N., de Winde J.H., Ruijssenaars H.J., Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresource Technol., 2010, 101 (16), 6291-6296. [Crossref]

  • 64. Kukurová K., Morales F.J., Bednáriková A., Ciesarová Z., Effect of L-asparaginase on acrylamide mitigation in fried-dough pastry model. Mol. Nutr. Food Res., 2009, 53, 1532-1539. [Crossref]

  • 65. Kuster B.F.M., 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch/Stärke, 1990, 42, 314-321. [Crossref]

  • 66. Lee Y.C., Shlyankevich M., Jeong H.K., Douglas J.S., Surh Y.J., Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester. Biochem. Biophys. Res. Commun., 1995, 209, 996-1002.

  • 67. Lewkowski, J., Synthesis chemistry and application of 5-hydroxymethylfurfural and its derivatives. Arkivoc, 2001, Part I, 17-54.

  • 68. Li Y.-X., Li Y., Qian Z.J., Kim M.-M., Kim S.-K., In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurenciaundulata in free-radical-mediated oxidative systems. J. Microbiol. Biotech., 2009, 19, 1319-1327.

  • 69. Liu L.Z., Moon J., Andersh B.J., Slininger P.J., Weber S., Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biot., 2008, 81, 743-753.

  • 70. Liu Z.L., Slininger P.J., Gorsich S.W., Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Microbiol. Biot., 2005, 121, 0451-0460.

  • 71. Locas C.P., Yaylayan V.A., Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J. Agric. Food Chem., 2008, 56, 6717- -6723. [Crossref]

  • 72. Locas C.P., Yaylayan V.A., Origin and mechanistic pathways of formation of the parent furan - A food toxicant. J. Agric. Food Chem., 2004, 52, 6830-6836. [Crossref]

  • 73. Mathlouthi M., Reiser P., Sucrose, Properties and Applications, 1994. 1st ed. Springer.

  • 74. Miljkovic M., Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects, 2009.1st ed. Springer.

  • 75. Monien B.H., Frank H., Seidel A., Glatt H., Conversion of the common food constituent 5-Hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. Chem. Res. Toxicol., 2009, 22, 1123-1128. [Crossref]

  • 76. Morales F.J., Arribas-Lorenzo G., The formation of potentially harmful compounds in churros, a Spanish fried-dough pastry, as influenced by deep frying conditions. Food Chem., 2008, 109, 421-425. [Crossref]

  • 77. Morales F.J., Jiménez-Pérez S., Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food Chem., 2001, 72, 525-531. [Crossref]

  • 78. Muratore G., Licciardello F., Restuccia C., Puglisi M.L., Giudici P., Role of different factors affecting the formation of 5-hydroxy- -methyl-2-furancarboxaldehyde in heated grape must. J. Agric. Food Chem., 2006, 54, 860-863. [Crossref]

  • 79. Murkovic M., Bornik M.-A., Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol. Nutr. Food Res., 2007, 51, 390-394. [Crossref]

  • 80. Murkovic M., Pichler N., Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol. Nutr. Food Res., 2006, 50, 842-846. [Crossref]

  • 81. Murty B., Kapoor J., Smith F., Levels of 5-hydroxymethylfurfural in dextrose injection. Am. J. Hosp. Pharm., 1977, 34, 205-206.

  • 82. Nanda V., Bera M.B., Bakhshi A.K., Optimization of the process parameters to establish the quality attributes of hydroxymethylfurfural content and diastatic activity of sunflower (Helianthusannus ) honey using response surface methodology. Eur. Food Res. Technol., 2006, 222, 64-70. [Crossref]

  • 83. Nässberger L., Influence of 5- Hydroxymethylfurfural (5-HMF) on the overall metabolism of human blood cells. Hum. Exp. Toxicol., 1990, 9, 211 -214. [Crossref]

  • 84. Nilsson-Thorell C., Muscalu N., Andren A., Kjellstrand P., Wieslander A., Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit. Dial. Int., 1993, 13, 208-213.

  • 85. Nishi Y., Miyakawa Y., Kato K., Chromosome aberrations induced by pyrolysates of carbohydrates in Chinese hamster V79 cells. Mutat. Res., 1989, 227, 117-123. [Crossref]

  • 86. NTP Technical Report, 1990. Toxicology and carcinogenesis studies of furfural.

  • 87. NTP Technical Report, 1999. Toxicology and carcinogenesis studies of furfuryl alcohol.

  • 88. NTP Technical Report, 2010. Toxicology and carcinogenesis studies of 5-(hydroxymethyl)-2-furfural.

  • 89. O’Neil Maryadele J., Merck Index, 14th Edition, 2006, COLEPARMER.

  • 90. Ordóñez-Santos L.E., Vázquez-Odériz L., Arbones-Maciñeira E., Romero-Rodríguez M.Á., The influence of storage time on micronutrients in bottled tomato pulp. Food Chem., 2009, 112, 146-149. [Crossref]

  • 91. Pfeifer P.A., Bonn G., Bobleter O., Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomycescarlsbergensis W 34. Biotechnol. Lett., 1984, 6, 541-546. [Crossref]

  • 92. Prior R.L., Wu X., Gu L., Identification and urinary excretion of metabolites of 5-(hydroxymethyl)-2-furfural in human subjects following consumption of dried plums or dried plum juice. J. Agric. Food Chem., 2006, 54, 3744-3749. [Crossref]

  • 93. Rada-Mendoza M., Sanz M.L., Olano A., Villamiel M., Formation of hydroxymethylfurfural and furosine during the storage of jams and fruit-based infant foods. Food Chem., 2004, 85, 605-609. [Crossref]

  • 94. Ramírez-Jiménez A., García-Villanova B., Guerra-Hernández E., Hydroxymethylfurfural and methylfurfural content of selected bakery products. Food Res. Int., 2000, 33, 833-838. [Crossref]

  • 95. Ramírez-Jiménez A., Guerra- Hernández E., García-Villanova B., Browning indicators in bread. J. Agric. Food Chem., 2000, 48, 4176-4181. [Crossref]

  • 96. Ramírez-Jiménez A., Guerra-Hernández E., García-Villanova B., Evolution of non-enzymatic browning during storage of infant rice cereal. Food Chem., 2003, 83, 219-225. [Crossref]

  • 97. Rasmussen A., Hessov I., Bojsen-Møller M., General and local toxicity of 5-hydroxymethyl-2-furfural in rabbits. Acta Pharmacol. Tox., 1982, 50, 81-84.

  • 98. Richardson P., Thermal Technologies in Food Processing, 2001. 1st ed. CRC Press, New York.

  • 99. Rufían-Henares J.A., de la Cueva S.P., Assessment of hydroxymethylfurfural intake in the Spanish diet. Food Addit. Contam.: Part A, 2008, 25, 1306-1312. [Crossref]

  • 100. Rufían-Henares J.A., Delgado-Andrade C., Morales F.J., Analysis of heat-damage indices in breakfast cereals: Influence of composition. J. Cereal Sci., 2006 43, 63-69. [Crossref]

  • 101. Rufían-Henares J.A., Delgado-Andrade C., Morales F.J., Assessing the Maillard reaction development during the toasting process of common flours employed by the cereal products industry. Food Chem., 2009, 114, 93-99. [Crossref]

  • 102. Rufían-Henares J.A., García-Villanova B., Guerra-Hernández E., Occurrence of furosine and hydroxymethylfurfural as markers of thermal damage in dehydrated vegetables. Eur. Food Res. Technol., 2008, 228, 249-256.

  • 103. Ruiz-Matute A.I., Soria A.C., Sanz M.L., Martínez-Castro I., Characterization of traditional Spanish edible plant syrups based on carbohydrate GC-MS analysis. J. Food Comp. Anal., 2010, 23, 260-263. [Crossref]

  • 104. Safo M.K., Danso-Danquah R., Joshi G.S., Abraham D.J., Anti-sickling agents. US patent No 7119208, 2006.

  • 105. Salman E.D., Kadlubar S.A., Falany C.N., Expression and localization of cytosolic sulfotransferase (SULT) 1A1 and SULT1A3 in normal human brain. Drug Metab. Dispos., 2009, 37, 706 -709. [Crossref]

  • 106. Sancho M.T., Muniategui S., Huidobro J.F., Simal Lozano J., Aging of honey. J. Agric. Food Chem., 1992, 40, 134-138. [Crossref]

  • 107. Sanz M.L., del Castillo M.D., Corzo N., Olano A., 2-Furoyl- -methyl amino acids and hydroxymethylfurfural as indicators of honey quality. J. Agric. Food Chem., 2003, 51, 4278-4283. [Crossref]

  • 108. Severin I., Dumont C., Jondeau-Cabaton A., Graillot V., Chagnon M.-C., Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays. Toxicol. Lett., 2010, 192, 189-194. [Crossref]

  • 109. Sharma V.K., Choi J., Sharma N., Choi M., Seo S.-Y., In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytother. Res., 2004, 18, 841-844. [Crossref]

  • 110. Shinohara K., Kim E.H., Omura H., Furans as the mutagens formed by aminocarbonyl reactions. Dev. Food Sci., 1986, 13, 353-362.

  • 111. Shinohara K., Kong Z.-L., Miwa M., Tsushida T., Kurogi M., Kitamura Y., Murakami H., Effect of mutagens on the viability and some enzymes of a serum-free cultured human histiocytic lymphoma cell line, U-937. Agr. Biol. Chem. Tokyo, 1990, 54, 373-380. [Crossref]

  • 112. Spano N., Casula L., Panzanelli A., Pilo M.I., Piu P.C., Scanu R., Tapparo A., Sanna G., An RP-HPLC determination of 5-hydroxymethylfurfural in honey: The case of strawberry tree honey. Talanta, 2006, 68, 1390-1395. [Crossref]

  • 113. Surh Y.J., Liem A., Miller J.A., Tannenbaum S.R., 5-Sulfooxy- -methylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxy- -methylfurfural. Carcinogenesis, 1994, 15, 2375-2377. [Crossref]

  • 114. Surh Y.-J., Tannenbaum S.R., Activation of the Maillard reaction product 5-(hydroxymethyl)furfural to strong mutagens via allylic sulfonation and chlorination. Chem. Res. Toxicol., 1994, 7, 313-318. [Crossref]

  • 115. Teubner W., Meinl W., Florian S., Kretzschmar M., Glatt H., Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem. J., 2007, 404, 207-215.

  • 116. Theobald A., Muller A., Anklam E., Determination of 5-hydroxymethylfurfural in vinegar samples by HPLC. J. Agric.F ood Chem., 1998, 46, 1850-1854.

  • 117. Timokhin B.V., Baransky V A., Eliseeva g D., 2011. Levulinic acid in organic synthesis [WWW Document]. URL http://pubs. rsc.org/en/Content/ArticleLanding/1999/RC/rc990073

  • 118. Tosi E., Ciappini M., Re E., Lucero H., Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem., 2002, 77, 71-74. [Crossref]

  • 119. Tosi E., Martinet R., Ortega M., Lucero H., Ré E., Honey diastase activity modified by heating. Food Chem., 2008, 106, 883-887. [Crossref]

  • 120. Tosi E.A., Ré, E., Lucero H., Bulacio L., Effect of honey hightemperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Sci. Technol., 2004, 37, 669-678. [Crossref]

  • 121. Turhan I., Tetik N., Karhan M., Gurel F., Reyhan Tavukcuoglu H., Quality of honeys influenced by thermal treatment. LWT - Food Sci. Technol., 2008, 41, 1396-1399. [Crossref]

  • 122. Uckun F.M., Jan S.-T.M., Mao C., Tubulin binding compounds (COBRA). US patent No 6258841, 2001.

  • 123. Ulbricht R.J., Northup S.J., Thomas J.A., A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fund. Appl. Toxicol., 1984, 4, 843-853. [Crossref]

  • 124. Vázquez L., Verdú A., Miquel A., Burló F., Carbonell-Barrachina A.A., Changes in physico-chemical properties, hydroxymethylfurfural and volatile compounds during concentration of honey and sugars in Alicante and Jijona turrón. Eur. Food Res. Technol., 2007, 225, 757-767.

  • 125. Vranová J., Ciesarová Z., Furan in food - A review. Czech J. Food Sci., 2009, 27, 1-10.

  • 126. Wang H., Hu X., Chen F., Wu J., Zhang Z., Liao X., Wang Z., Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. Eur. Food Res. Technol., 2006, 223, 282-289.

  • 127. Wang M.-Y., Zhao F.-M., Peng H.-Y., Lou C.-H., Li Y., Ding X., Yu X.-Y., Yang G.-M., Xu D.-Q., Jiang L.-H., Zhang X., Ye L.-H., Cai B.-C., Investigation on the morphological protective effect of 5-hydroxymethylfurfural extracted from wineprocessed Fructus corni on human L02 hepatocytes. J. Ethnopharmacol., 2010, 130, 424-428. [Crossref]

  • 128. Wieslander A.P., Andrén A., Martinson E., Kjellstrand P., Hultqvist M., Toxicity of effluent peritoneal dialysis fluid. Adv. Perit. Dial., 1993, 9, 31-35.

  • 129. Yamada P., Nemoto M., Shigemori H., Yokota S., Isoda H., Isolation of 5-(hydroxymethyl)furfural from Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med., 2011, 77, 434-440. [Crossref]

  • 130. Yaylayan V.A., Classification of the Maillard reaction: A conceptual approach. Trends Food Sci. Tech., 1997, 8, 13-18. [Crossref]

  • 131. Yaylayan V.A., Huyghues-Despointes A., Feather M.S., Chemistry of Amadori rearrangement products: Analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit. Rev. Food Sci. Nutr., 1994, 34, 321-369. [Crossref]

  • 132. Yaylayan V.A., Ismail A.A., Investigation of the enolization and carbonyl group migration in reducing sugars by FTIR spectroscopy. Carbohydr. Res., 1995, 276, 253-265. [Crossref]

  • 133. Yaylayan V.A., Precursors, formation and determination of furan in food. J. Verbrauch. Lebensm., 2006, 1, 5-9. [Crossref]

  • 134. Zaldivar J., Martinez A., Ingram L.O., Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichiacoli. Biotechnol. Bioeng., 1999 65, 24-33. [Crossref]

  • 135. Zappala M., Fallico B., Arena E., Verzera A., Methods for the determination of HMF in honey: a comparison. Food Contr., 2005, 16, 273-277. [Crossref]

  • 136. Zhang X.M., Chan C.C., Stamp D., Minkin S., Archer M.C., Bruce W.R., Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethyl-2-furaldehyde in thermolyzed sucrose. Carcinogenesis, 1993, 14, 773-775. [Crossref]

  • 137. Zhao H., Holladay J.E., Brown H., Zhang Z.C., Metal chlorides in ionic liquid solvents convert sugars to 5-Hydroxymethylfurfural. Science, 2007, 316, 1597-1600.

About the article

Published Online: 2013-11-27

Published in Print: 2013-12-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0082-4. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in