Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

5-Hydroxymethyl-2-Furfural (HMF) – Heat-Induced Formation, Occurrence in Food and Biotransformation – a Review

Stanisław Kowalski
  • Corresponding author
  • Department of Carbohydrate Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcin Lukasiewicz
  • Department of Carbohydrate Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Duda-Chodak
  • Department of Fermentation Technology and Technical Microbiology, University of Agriculture in Krakow, ul. Balicka 122, 30–149 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriela Zięć
  • Department of Carbohydrate Technology, University of Agriculture in Krakow, ul. Balicka 122, 30–149 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-11-27 | DOI: https://doi.org/10.2478/v10222-012-0082-4

Abstract

The chemical structure of 5-hydroxymethyl-2-furfural (HMF), its physicochemical properties and reactions that lead to the synthesis of HMF were discussed. Special attention was paid to HMF formation in food during processing. The potential applications of this compound in industry were described as well. Moreover, this review outlines the most important sources of HMF in human diet and estimates the potential daily intake of HMF by consumers. The known and suggested metabolic pathways, as well as the impact of HMF and its metabolites on human health are also discussed.

Keywords: 5-hydroxymethyl-2-furfural (HMF); HMF synthesis; biotransformation; HMF metabolism; impact on health; heat indicator

  • 1. Abdulmalik O., Safo M.K., Chen Q., Yang J., Brugnara C., Ohene-Frempong K., Abraham D.J., Asakura T., 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br. J. Haematol., 2005, 128, 552-561.Google Scholar

  • 2. Aeschbacher H.U., Chappuis C., Manganel M., Aeschbach R., Investigation of Maillard products in bacterial mutagenicity test systems. Prog. Food Nutr. Sci., 1981, 5, 279-293.Google Scholar

  • 3. Akıllıoglu G., Mogol B.A., Gökmen V., Degradation of 5-hydroxymethylfurfural during yeast fermentation. Food Addit. Contam., 2011, 28, 1629-1635.Google Scholar

  • 4. Aktar Hossain S., Pal P.K., Sarkar P.K., Patil G.R., Sensory characteristics of dudh churpi in relation to its chemical composition. Z. Lebensm. Unters. Forsch., 1999, 208, 178-182.CrossrefGoogle Scholar

  • 5. Albala-Hurtado S., Veciana-Nogues M.T., Marine-Font A., Vidal- Carou M.C., Changes in furfural compounds during storage of infant milks. J. Agric. Food Chem., 1998, 46, 2998-3003.CrossrefGoogle Scholar

  • 6. Ameur L.A., Mathieu O., Lalanne V., Trystram G., Birlouez- -Aragon I., Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chem., 2007, 101, 1407-1416.CrossrefGoogle Scholar

  • 7. Antal M.J., Mok W.S.L., Richards G.N., Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from -fructose and sucrose. Carbohydr. Res., 1990, 199, 91-109.Google Scholar

  • 8. Arribas-Lorenzo G., Morales F.J., Estimation of dietary intake of 5-hydroxymethylfurfural and related substances from coffee to Spanish population. Food Chem. Toxicol., 2010, 48, 644-649.CrossrefGoogle Scholar

  • 9. Ashry, E.S.H.E. (Ed.),. Heterocycles from Carbohydrate Precursors, Berlin 2007, Springer Verlag.Google Scholar

  • 10. Bakhiya N., Monien B., Frank H., Seidel A., Glatt H., Renal organic anion transporters OAT1 and OAT3 mediate the cellular accumulation of 5-sulfooxymethylfurfural, a reactive, nephrotoxic metabolite of the Maillard product 5-hydroxymethylfurfural. Biochem. Pharmacol., 2009, 78, 414-419.CrossrefGoogle Scholar

  • 11. Bartákova K., Dračková M., Borkovcová I., Vorlova L., Impact of microwave heating on hydroxymethylfurfural content in Czech honeys. Czech J. Food Sci., 2011, 29, 328-336.Google Scholar

  • 12. Belitz H.-D., Grosch W., Schieberle P., Food Chemistry. 2009, 4th ed. Springer, Berlin Heidelberg.Google Scholar

  • 13. Boopathy R., Bokang H., Daniels L., Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol., 1993, 11, 147-150.CrossrefGoogle Scholar

  • 14. Brands C.M.J., van Boekel M.A.J.S., Kinetic modelling of reactions in heated disaccharide-casein systems. Food Chem., 2003, 83, 13-26.CrossrefGoogle Scholar

  • 15. Brands C.M.J., van Boekel M.A.J.S., Reactions of monosaccharides during heating of sugar−casein systems: Building of a reaction network model. J. Agric. Food Chem., 2001, 49, 4667-4675.CrossrefGoogle Scholar

  • 16. Burdurlu H.S., Karadeniz F., Effect of storage on nonenzymatic browning of apple juice concentrates. Food Chem., 2003, 80, 91-97.CrossrefGoogle Scholar

  • 17. Cais-Sokolinska D., Pikul J., Dankow R., Measurement of colour parametrs as an index of the hydroxymethylfurfural content in the UHT sterilised milk during its storage. EJPAU, 2004, 7.Google Scholar

  • 18. Capuano E., Ferrigno A., Acampa I., Serpen A., Açar Ö.Ç., Gökmen V., Fogliano V., Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Res. Int., 2009, 42, 1295-1302.CrossrefGoogle Scholar

  • 19. Capuano E., Fogliano V., Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Sci. Technol., 2011, 44, 793-810.CrossrefGoogle Scholar

  • 20. Chen L., Huang H., Liu W., Peng N., Huang X., Kinetics of the 5-hydroxymethylfurfural formation reaction in Chinese rice wine. J. Agric. Food Chem., 2010, 58, 3507-3511.CrossrefGoogle Scholar

  • 21. Corma A., Iborra S., Velty A., Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107, 2411-2502.CrossrefGoogle Scholar

  • 22. Council Directive, 2001. Council Directive of 20 December relating to honey 2001/110/EC, Official Journal of the European Communities.Google Scholar

  • 23. del Campo G., Berregi I., Caracena R., Zuriarrain J., Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta, 2010, 81, 367-371.CrossrefGoogle Scholar

  • 24. Delgado-Andrade C., Morales F.J., Seiquer I., Pilar Navarro M., Maillard reaction products profile and intake from Spanish typical dishes. Food Res. Int., 2010, 43, 1304-1311.CrossrefGoogle Scholar

  • 25. Delgado-Andrade C., Seiquer I., Navarro M.P., Morales F.J., Estimation of hydroxymethylfurfural availability in breakfast cereals. Studies in Caco-2 cells. Food Chem. Toxicol., 2008, 46, 1600-1607.CrossrefGoogle Scholar

  • 26. Ding X., Wang M.-Y., Yao Y.-X., Li G.-Y., Cai B.-C., Protective effect of 5-hydroxymethylfurfural derived from processed FructusCorni on human hepatocyte LO2 injured by hydrogen peroxide and its mechanism. J. Ethnopharmacol., 2010, 128, 373-376.CrossrefGoogle Scholar

  • 27. Du Y., Pan K., Zhang W., Yan X., Hong J., 5-(hydroxymethyl) furfural and derivatives as inhibitors of TNFalpha and IL-1beta production. US patent, No 2005/0124684 A1, 2005Google Scholar

  • 28. Durling L.J.K., Busk L., Hellman B.E., Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol., 2009, 47, 880-884.CrossrefGoogle Scholar

  • 29. Escriche I., Visquert M., Carot J.M., Domenech E., Fito P., Effect of honey thermal conditions on hydroxymethylfurfural content prior to pasteurization. Food Sci. Technol. Int., 2008, 14, 29-35.CrossrefGoogle Scholar

  • 30. Fallico B., Arena E., Zappala M., Degradation of 5-hydroxymethylfurfural in honey. J. Food Sci., 2008, 73, C625-C631.CrossrefGoogle Scholar

  • 31. Fallico B., Arena E., Zappalà M., Roasting of hazelnuts. Role of oil in colour development and hydroxymethylfurfural formation. Food Chem., 2003, 81, 569-573.CrossrefGoogle Scholar

  • 32. Fallico B., Zappalà M., Arena E., Verzera A., Effects of conditioning on HMF content in unifloral honeys. Food Chem., 2004, 85, 305-313.CrossrefGoogle Scholar

  • 33. Fernandez-Artigas P., Guerra-Hernandez E., Garcia-Villanova B., Browning indicators in model systems and baby cereals. J. Agric. Food Chem., 1999, 47, 2872-2878.CrossrefGoogle Scholar

  • 34. Florin I., Rutberg L., Curvall M., Enzell C.R., Screening of tobacco smoke constituents for mutagenicity using the Ames’ test. Toxicology, 1980, 15, 219-232.CrossrefGoogle Scholar

  • 35. Fox P.F., Advanced Dairy Chemistry, Volume 3: Lactose, Water, Salts and Vitamins, 1992, 2nd ed. Springer.Google Scholar

  • 36. Friedman M., Food browning and its prevention: An overview. J. Agric. Food Chem., 1996 44, 631-653.CrossrefGoogle Scholar

  • 37. Gentry T.S., Roberts J.S., Formation kinetics and application of 5-hydroxymethylfurfural as a time-temperature indicator of lethality for continuous pasteurization of apple cider. Innov. Food Sci. Emerg., 2004, 5, 327-333.CrossrefGoogle Scholar

  • 38. Germond J.-E., Philippossian G., Richli U., Bracco I., Arnaud M.J., Rapid and complete urinary elimination of [14C]-5-hydroxymethyl-2-furaldehyde administered orally or intravenously to rats. J. Toxicol. Environ. Health, 1987, 22, 79-89.CrossrefGoogle Scholar

  • 39. Ghorpade V.M., Hanna M.A, Method and apparatus for production of levulinic acid via reactive extrusion. US patent No 5859263, 1999.Google Scholar

  • 40. Gidamis A.B., Chove B.E., Shayo N.B., Nnko S.A., Bangu N.T., Quality evaluation of honey harvested from selected areas in Tanzania with special emphasis on hydroxymethyl furfural (HMF) levels. Plant Foods Hum. Nutr., 2004, 59, 129-132.Google Scholar

  • 41. Girisuta B., Janssen L.P.B.M., Heeres H.J., Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chem. Eng. Res. Des., 2006, 84, 339-349.CrossrefGoogle Scholar

  • 42. Godfrey V.B., Chen L.-J., Griffin R.J., Lebetkin E.H., Burka L.T., Distribution and metabolism of (5-hydroxymethyl)furfural in male F344 rats and B6C3F1 mice after oral administration. J. Toxicol. Environ. Health , Part A: Current Issues, 1999, 57, 199-210.Google Scholar

  • 43. Gökmen V., Açar Ö.Ç., Arda S., Francisco J.M., Effect of leavening agents and sugars on the formation of hydroxymethylfurfural in cookies during baking. Eur. Food Res. Technol., 2008, 226, 1031-1037.CrossrefGoogle Scholar

  • 44. Gökmen V., Açar Ö.Ç., Köksel H., Acar J., Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem., 2007, 104, 1136-1142.CrossrefGoogle Scholar

  • 45. Gökmen V., Şenyuva H.Z., Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system. Eur. Food Res. Technol., 2007, 225, 815-820.Google Scholar

  • 46. Hadi S.M., Shahabuddin R.A., Specificity of the interaction of furfural with DNA. Mutat. Res., 1989, 225, 101-106.Google Scholar

  • 47. Haynes W.M., CRC Handbook of Chemistry and Physics, 2010, 91st ed. CRC Press.Google Scholar

  • 48. Heinze T., Barsett H., Ebringerová A., Harding S.E., Heinze T., Hromádková Z., Muzzarelli C., Muzzraelli R.A.A., Paulsen B.S., El Seoud O.A., Polysaccharides I: Structure, Characterisation and Use. 2005. 1st ed. Springer.Google Scholar

  • 49. Hidalgo A., Pompei C., Hydroxymethylfurfural and furosine reaction kinetics in tomato products. J. Agric. Food Chem., 2000, 48, 78-82.CrossrefGoogle Scholar

  • 50. Hiramoto K., Sekiguchi K., Ayuha K., Aso-o R., Moriya N., Kato T., Kikugawa K., DNA breaking activity and mutagenicity of soy sauce: characterization of the active components and identification of 4-hydroxy-5-methyl-3(2H)-furanone. Mutat. Res.-Envir. Muta., 1996, 359, 119-132.Google Scholar

  • 51. Hoydonckx H.E. et al., Furfural and Derivatives., in Wiley-VCH Verlag GmbH & Co. KGaA, ed. Ullmann’s Encyclopedia of Industrial Chemistry. 2007, Weinheim, Germany: Wiley-VCH.Google Scholar

  • 52. Husoy T., Haugen M., Murkovic M., Jobstl D., Stolen L.H., Bjellaas T., Ronningborg C., Glatt H., Alexander J., Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure. Food Chem. Toxicol., 2008, 46, 3697-3702.CrossrefGoogle Scholar

  • 53. Ibarz A., Pagán J., Garza S., Kinetic models for colour changes in pear puree during heating at relatively high temperatures. J. Food Eng., 1999, 39, 415-422.CrossrefGoogle Scholar

  • 54. Ichikawa M., Yamamoto K., Tanaka A., Swaminathan S., Hatcher J.F., Erturk E., Bryan G.T., Mutagenicity of 3,4-diphenyl- -5-nitrofuran analogs in Salmonella typhimurium. Carcinogenesis, 1986, 7, 1339 -1344.CrossrefGoogle Scholar

  • 55. Jansson T., Curvall M., Hedin A., Enzell C.R., In vitro studies of biological effects of cigarette smoke condensate: II. Induction of sister-chromatid exchanges in human lymphocytes by weakly acidic, semivolatile constituents. Mutat. Res.-Genet. Tox., 1986, 169, 129-139.CrossrefGoogle Scholar

  • 56. Janzowski C., Glaab V., Samimi E., Schlatter J., Eisenbrand G., 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA- -damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol., 2000, 38, 801-809.CrossrefGoogle Scholar

  • 57. Jellum E., Børresen H.C., Eldjarn L., The presence of furan derivatives in patients receiving fructose-containing solutions intravenously. Clin. Chim. Acta, 1973, 47, 191-201.CrossrefGoogle Scholar

  • 58. Jing Q., Lu X., Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chinese J. Chem. Eng., 2008, 16, 890-894.CrossrefGoogle Scholar

  • 59. Kabyemela B.M., Adschiri T., Malaluan R.M., Arai K., Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind. Eng. Chem. Res., 1997, 36, 1552-1558.CrossrefGoogle Scholar

  • 60. Kasai H., Kumeno K., Yamaizumi Z., Nishimura S., Nagao M., Fujita Y., Sugimura T., Nukaya H., Kosuge T., Mutagenicity of methylglyoxal in coffee. Jpn. J. Cancer. Res., 1982, 73, 681-683.Google Scholar

  • 61. Khalil M.I., Sulaiman S.A., Gan S.H., High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol., 2010, 48, 2388-2392.CrossrefGoogle Scholar

  • 62. Kim H.-J., Richardson M., Determination of 5-hydroxymethylfurfural by ion-exclusion chromatography with UV detection. J. Chromatogr. A, 1992, 593, 153-156.Google Scholar

  • 63. Koopman F., Wierckx N., de Winde J.H., Ruijssenaars H.J., Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresource Technol., 2010, 101 (16), 6291-6296.CrossrefGoogle Scholar

  • 64. Kukurová K., Morales F.J., Bednáriková A., Ciesarová Z., Effect of L-asparaginase on acrylamide mitigation in fried-dough pastry model. Mol. Nutr. Food Res., 2009, 53, 1532-1539.CrossrefGoogle Scholar

  • 65. Kuster B.F.M., 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch/Stärke, 1990, 42, 314-321.CrossrefGoogle Scholar

  • 66. Lee Y.C., Shlyankevich M., Jeong H.K., Douglas J.S., Surh Y.J., Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester. Biochem. Biophys. Res. Commun., 1995, 209, 996-1002.Google Scholar

  • 67. Lewkowski, J., Synthesis chemistry and application of 5-hydroxymethylfurfural and its derivatives. Arkivoc, 2001, Part I, 17-54.Google Scholar

  • 68. Li Y.-X., Li Y., Qian Z.J., Kim M.-M., Kim S.-K., In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurenciaundulata in free-radical-mediated oxidative systems. J. Microbiol. Biotech., 2009, 19, 1319-1327.Google Scholar

  • 69. Liu L.Z., Moon J., Andersh B.J., Slininger P.J., Weber S., Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biot., 2008, 81, 743-753.Google Scholar

  • 70. Liu Z.L., Slininger P.J., Gorsich S.W., Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl. Microbiol. Biot., 2005, 121, 0451-0460.Google Scholar

  • 71. Locas C.P., Yaylayan V.A., Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J. Agric. Food Chem., 2008, 56, 6717- -6723.CrossrefGoogle Scholar

  • 72. Locas C.P., Yaylayan V.A., Origin and mechanistic pathways of formation of the parent furan - A food toxicant. J. Agric. Food Chem., 2004, 52, 6830-6836.CrossrefGoogle Scholar

  • 73. Mathlouthi M., Reiser P., Sucrose, Properties and Applications, 1994. 1st ed. Springer.Google Scholar

  • 74. Miljkovic M., Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects, 2009.1st ed. Springer.Google Scholar

  • 75. Monien B.H., Frank H., Seidel A., Glatt H., Conversion of the common food constituent 5-Hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. Chem. Res. Toxicol., 2009, 22, 1123-1128.CrossrefGoogle Scholar

  • 76. Morales F.J., Arribas-Lorenzo G., The formation of potentially harmful compounds in churros, a Spanish fried-dough pastry, as influenced by deep frying conditions. Food Chem., 2008, 109, 421-425.CrossrefGoogle Scholar

  • 77. Morales F.J., Jiménez-Pérez S., Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food Chem., 2001, 72, 525-531.CrossrefGoogle Scholar

  • 78. Muratore G., Licciardello F., Restuccia C., Puglisi M.L., Giudici P., Role of different factors affecting the formation of 5-hydroxy- -methyl-2-furancarboxaldehyde in heated grape must. J. Agric. Food Chem., 2006, 54, 860-863.CrossrefGoogle Scholar

  • 79. Murkovic M., Bornik M.-A., Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol. Nutr. Food Res., 2007, 51, 390-394.CrossrefGoogle Scholar

  • 80. Murkovic M., Pichler N., Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol. Nutr. Food Res., 2006, 50, 842-846.CrossrefGoogle Scholar

  • 81. Murty B., Kapoor J., Smith F., Levels of 5-hydroxymethylfurfural in dextrose injection. Am. J. Hosp. Pharm., 1977, 34, 205-206.Google Scholar

  • 82. Nanda V., Bera M.B., Bakhshi A.K., Optimization of the process parameters to establish the quality attributes of hydroxymethylfurfural content and diastatic activity of sunflower (Helianthusannus ) honey using response surface methodology. Eur. Food Res. Technol., 2006, 222, 64-70.CrossrefGoogle Scholar

  • 83. Nässberger L., Influence of 5- Hydroxymethylfurfural (5-HMF) on the overall metabolism of human blood cells. Hum. Exp. Toxicol., 1990, 9, 211 -214.CrossrefGoogle Scholar

  • 84. Nilsson-Thorell C., Muscalu N., Andren A., Kjellstrand P., Wieslander A., Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit. Dial. Int., 1993, 13, 208-213.Google Scholar

  • 85. Nishi Y., Miyakawa Y., Kato K., Chromosome aberrations induced by pyrolysates of carbohydrates in Chinese hamster V79 cells. Mutat. Res., 1989, 227, 117-123.CrossrefGoogle Scholar

  • 86. NTP Technical Report, 1990. Toxicology and carcinogenesis studies of furfural.Google Scholar

  • 87. NTP Technical Report, 1999. Toxicology and carcinogenesis studies of furfuryl alcohol.Google Scholar

  • 88. NTP Technical Report, 2010. Toxicology and carcinogenesis studies of 5-(hydroxymethyl)-2-furfural.Google Scholar

  • 89. O’Neil Maryadele J., Merck Index, 14th Edition, 2006, COLEPARMER.Google Scholar

  • 90. Ordóñez-Santos L.E., Vázquez-Odériz L., Arbones-Maciñeira E., Romero-Rodríguez M.Á., The influence of storage time on micronutrients in bottled tomato pulp. Food Chem., 2009, 112, 146-149.CrossrefGoogle Scholar

  • 91. Pfeifer P.A., Bonn G., Bobleter O., Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomycescarlsbergensis W 34. Biotechnol. Lett., 1984, 6, 541-546.CrossrefGoogle Scholar

  • 92. Prior R.L., Wu X., Gu L., Identification and urinary excretion of metabolites of 5-(hydroxymethyl)-2-furfural in human subjects following consumption of dried plums or dried plum juice. J. Agric. Food Chem., 2006, 54, 3744-3749.CrossrefGoogle Scholar

  • 93. Rada-Mendoza M., Sanz M.L., Olano A., Villamiel M., Formation of hydroxymethylfurfural and furosine during the storage of jams and fruit-based infant foods. Food Chem., 2004, 85, 605-609.CrossrefGoogle Scholar

  • 94. Ramírez-Jiménez A., García-Villanova B., Guerra-Hernández E., Hydroxymethylfurfural and methylfurfural content of selected bakery products. Food Res. Int., 2000, 33, 833-838.CrossrefGoogle Scholar

  • 95. Ramírez-Jiménez A., Guerra- Hernández E., García-Villanova B., Browning indicators in bread. J. Agric. Food Chem., 2000, 48, 4176-4181.CrossrefGoogle Scholar

  • 96. Ramírez-Jiménez A., Guerra-Hernández E., García-Villanova B., Evolution of non-enzymatic browning during storage of infant rice cereal. Food Chem., 2003, 83, 219-225.CrossrefGoogle Scholar

  • 97. Rasmussen A., Hessov I., Bojsen-Møller M., General and local toxicity of 5-hydroxymethyl-2-furfural in rabbits. Acta Pharmacol. Tox., 1982, 50, 81-84.Google Scholar

  • 98. Richardson P., Thermal Technologies in Food Processing, 2001. 1st ed. CRC Press, New York.Google Scholar

  • 99. Rufían-Henares J.A., de la Cueva S.P., Assessment of hydroxymethylfurfural intake in the Spanish diet. Food Addit. Contam.: Part A, 2008, 25, 1306-1312.CrossrefGoogle Scholar

  • 100. Rufían-Henares J.A., Delgado-Andrade C., Morales F.J., Analysis of heat-damage indices in breakfast cereals: Influence of composition. J. Cereal Sci., 2006 43, 63-69.CrossrefGoogle Scholar

  • 101. Rufían-Henares J.A., Delgado-Andrade C., Morales F.J., Assessing the Maillard reaction development during the toasting process of common flours employed by the cereal products industry. Food Chem., 2009, 114, 93-99.CrossrefGoogle Scholar

  • 102. Rufían-Henares J.A., García-Villanova B., Guerra-Hernández E., Occurrence of furosine and hydroxymethylfurfural as markers of thermal damage in dehydrated vegetables. Eur. Food Res. Technol., 2008, 228, 249-256.Google Scholar

  • 103. Ruiz-Matute A.I., Soria A.C., Sanz M.L., Martínez-Castro I., Characterization of traditional Spanish edible plant syrups based on carbohydrate GC-MS analysis. J. Food Comp. Anal., 2010, 23, 260-263.CrossrefGoogle Scholar

  • 104. Safo M.K., Danso-Danquah R., Joshi G.S., Abraham D.J., Anti-sickling agents. US patent No 7119208, 2006.Google Scholar

  • 105. Salman E.D., Kadlubar S.A., Falany C.N., Expression and localization of cytosolic sulfotransferase (SULT) 1A1 and SULT1A3 in normal human brain. Drug Metab. Dispos., 2009, 37, 706 -709.CrossrefGoogle Scholar

  • 106. Sancho M.T., Muniategui S., Huidobro J.F., Simal Lozano J., Aging of honey. J. Agric. Food Chem., 1992, 40, 134-138.CrossrefGoogle Scholar

  • 107. Sanz M.L., del Castillo M.D., Corzo N., Olano A., 2-Furoyl- -methyl amino acids and hydroxymethylfurfural as indicators of honey quality. J. Agric. Food Chem., 2003, 51, 4278-4283.CrossrefGoogle Scholar

  • 108. Severin I., Dumont C., Jondeau-Cabaton A., Graillot V., Chagnon M.-C., Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays. Toxicol. Lett., 2010, 192, 189-194.CrossrefGoogle Scholar

  • 109. Sharma V.K., Choi J., Sharma N., Choi M., Seo S.-Y., In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytother. Res., 2004, 18, 841-844.CrossrefGoogle Scholar

  • 110. Shinohara K., Kim E.H., Omura H., Furans as the mutagens formed by aminocarbonyl reactions. Dev. Food Sci., 1986, 13, 353-362.Google Scholar

  • 111. Shinohara K., Kong Z.-L., Miwa M., Tsushida T., Kurogi M., Kitamura Y., Murakami H., Effect of mutagens on the viability and some enzymes of a serum-free cultured human histiocytic lymphoma cell line, U-937. Agr. Biol. Chem. Tokyo, 1990, 54, 373-380.CrossrefGoogle Scholar

  • 112. Spano N., Casula L., Panzanelli A., Pilo M.I., Piu P.C., Scanu R., Tapparo A., Sanna G., An RP-HPLC determination of 5-hydroxymethylfurfural in honey: The case of strawberry tree honey. Talanta, 2006, 68, 1390-1395.CrossrefGoogle Scholar

  • 113. Surh Y.J., Liem A., Miller J.A., Tannenbaum S.R., 5-Sulfooxy- -methylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxy- -methylfurfural. Carcinogenesis, 1994, 15, 2375-2377.CrossrefGoogle Scholar

  • 114. Surh Y.-J., Tannenbaum S.R., Activation of the Maillard reaction product 5-(hydroxymethyl)furfural to strong mutagens via allylic sulfonation and chlorination. Chem. Res. Toxicol., 1994, 7, 313-318.CrossrefGoogle Scholar

  • 115. Teubner W., Meinl W., Florian S., Kretzschmar M., Glatt H., Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem. J., 2007, 404, 207-215.Google Scholar

  • 116. Theobald A., Muller A., Anklam E., Determination of 5-hydroxymethylfurfural in vinegar samples by HPLC. J. Agric.F ood Chem., 1998, 46, 1850-1854.Google Scholar

  • 117. Timokhin B.V., Baransky V A., Eliseeva g D., 2011. Levulinic acid in organic synthesis [WWW Document]. URL http://pubs. rsc.org/en/Content/ArticleLanding/1999/RC/rc990073Google Scholar

  • 118. Tosi E., Ciappini M., Re E., Lucero H., Honey thermal treatment effects on hydroxymethylfurfural content. Food Chem., 2002, 77, 71-74.CrossrefGoogle Scholar

  • 119. Tosi E., Martinet R., Ortega M., Lucero H., Ré E., Honey diastase activity modified by heating. Food Chem., 2008, 106, 883-887.CrossrefGoogle Scholar

  • 120. Tosi E.A., Ré, E., Lucero H., Bulacio L., Effect of honey hightemperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Sci. Technol., 2004, 37, 669-678.CrossrefGoogle Scholar

  • 121. Turhan I., Tetik N., Karhan M., Gurel F., Reyhan Tavukcuoglu H., Quality of honeys influenced by thermal treatment. LWT - Food Sci. Technol., 2008, 41, 1396-1399.CrossrefGoogle Scholar

  • 122. Uckun F.M., Jan S.-T.M., Mao C., Tubulin binding compounds (COBRA). US patent No 6258841, 2001.Google Scholar

  • 123. Ulbricht R.J., Northup S.J., Thomas J.A., A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fund. Appl. Toxicol., 1984, 4, 843-853.CrossrefGoogle Scholar

  • 124. Vázquez L., Verdú A., Miquel A., Burló F., Carbonell-Barrachina A.A., Changes in physico-chemical properties, hydroxymethylfurfural and volatile compounds during concentration of honey and sugars in Alicante and Jijona turrón. Eur. Food Res. Technol., 2007, 225, 757-767.Google Scholar

  • 125. Vranová J., Ciesarová Z., Furan in food - A review. Czech J. Food Sci., 2009, 27, 1-10.Google Scholar

  • 126. Wang H., Hu X., Chen F., Wu J., Zhang Z., Liao X., Wang Z., Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. Eur. Food Res. Technol., 2006, 223, 282-289.Google Scholar

  • 127. Wang M.-Y., Zhao F.-M., Peng H.-Y., Lou C.-H., Li Y., Ding X., Yu X.-Y., Yang G.-M., Xu D.-Q., Jiang L.-H., Zhang X., Ye L.-H., Cai B.-C., Investigation on the morphological protective effect of 5-hydroxymethylfurfural extracted from wineprocessed Fructus corni on human L02 hepatocytes. J. Ethnopharmacol., 2010, 130, 424-428.CrossrefGoogle Scholar

  • 128. Wieslander A.P., Andrén A., Martinson E., Kjellstrand P., Hultqvist M., Toxicity of effluent peritoneal dialysis fluid. Adv. Perit. Dial., 1993, 9, 31-35.Google Scholar

  • 129. Yamada P., Nemoto M., Shigemori H., Yokota S., Isoda H., Isolation of 5-(hydroxymethyl)furfural from Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med., 2011, 77, 434-440.CrossrefGoogle Scholar

  • 130. Yaylayan V.A., Classification of the Maillard reaction: A conceptual approach. Trends Food Sci. Tech., 1997, 8, 13-18.CrossrefGoogle Scholar

  • 131. Yaylayan V.A., Huyghues-Despointes A., Feather M.S., Chemistry of Amadori rearrangement products: Analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit. Rev. Food Sci. Nutr., 1994, 34, 321-369.CrossrefGoogle Scholar

  • 132. Yaylayan V.A., Ismail A.A., Investigation of the enolization and carbonyl group migration in reducing sugars by FTIR spectroscopy. Carbohydr. Res., 1995, 276, 253-265.CrossrefGoogle Scholar

  • 133. Yaylayan V.A., Precursors, formation and determination of furan in food. J. Verbrauch. Lebensm., 2006, 1, 5-9.CrossrefGoogle Scholar

  • 134. Zaldivar J., Martinez A., Ingram L.O., Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichiacoli. Biotechnol. Bioeng., 1999 65, 24-33.CrossrefGoogle Scholar

  • 135. Zappala M., Fallico B., Arena E., Verzera A., Methods for the determination of HMF in honey: a comparison. Food Contr., 2005, 16, 273-277.CrossrefGoogle Scholar

  • 136. Zhang X.M., Chan C.C., Stamp D., Minkin S., Archer M.C., Bruce W.R., Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethyl-2-furaldehyde in thermolyzed sucrose. Carcinogenesis, 1993, 14, 773-775.CrossrefGoogle Scholar

  • 137. Zhao H., Holladay J.E., Brown H., Zhang Z.C., Metal chlorides in ionic liquid solvents convert sugars to 5-Hydroxymethylfurfural. Science, 2007, 316, 1597-1600. Google Scholar

About the article

Published Online: 2013-11-27

Published in Print: 2013-12-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0082-4.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jian-Hai Wu, Ting-Ting Feng, Xu Liang, Cui-Ping Yu, Liang Dong, Ming Du, Ming-Qian Tan, and Xian-Bing Xu
Food Analytical Methods, 2017
[3]
Bojana Filipčev, Aleksandra Mišan, Bojana Šarić, and Olivera Šimurina
International Journal of Food Sciences and Nutrition, 2016, Volume 67, Number 3, Page 249
[4]
Mustafa Mortas, Osman Gul, Fehmi Yazici, and Muhammet Dervisoğlu
International Journal of Food Properties, 2017, Volume 20, Number 8, Page 1866
[5]
[6]
Konstantinos M. Kasiotis and Kyriaki Machera
Toxicological & Environmental Chemistry, 2017, Volume 99, Number 4, Page 578
[7]
Yew Chee Kam, Siew Ling Hii, Cheryl Yan-Yi Sim, and Lisa Gaik Ai Ong
International Journal of Polymer Science, 2016, Volume 2016, Page 1

Comments (0)

Please log in or register to comment.
Log in