Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
See all formats and pricing
More options …

Non-Nutritive Compounds in Fabaceae Family Seeds and the Improvement of Their Nutritional Quality by Traditional Processing – a Review

Piotr Gulewicz
  • Corresponding author
  • Adam Mickiewicz University Foundation Poznan Science and Technology Park 46 Rubież St., 61–612 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina Martinez-Villaluenga
  • Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Kasprowicz-Potocka
  • Department of Animal Nutrition and Feed Management, University of Life Sciences, Wołyńska 33, 60–637 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juana Frias
  • Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-27 | DOI: https://doi.org/10.2478/v10222-012-0098-9


The consumption of seeds of the Fabaceae family is distributed worldwide mainly due to their high content of proteins, carbohydrates, dietary fiber and polyunsaturated fatty acids, jointly with vitamins and minerals. However, they contain several non-nutritive compounds (NNCs) that can exert adverse or beneficial actions upon ingestion depending on their chemical structure, concentration, time of exposure and their interaction with other dietary components. In this review, we present the representative legume NNCs, their chemical nature and their adverse and beneficial biological actions. Moreover, we summarized updated findings on the effect of different traditional processing, bearing in mind that legumes are mainly consumed in the household milieu, on the concentration of legume NNCs. The results of the in-vivo studies prove that the reduction/elimination of legume NNCs improves nutritional quality and the fate of improvements depends on many parameters such as botanical source, chemical composition, content, type of processing and operational conditions used, among others. Together, this review can provide a comprehensive perspective for further elucidating the roles of plant lectins that may target programmed cell death pathways. This review may, in turn, ultimately help to consumers for whom legumes are part of a vegetarian diet or are consumed as staple food which must take into consideration the improvement of legume nutritive quality by traditional processing.

Keywords: legumes; non-nutritive compounds; processing; nutritive quality


  • 1. Abdelatief S., El-Jasser H., Chemical and biological properties of local cowpea seed protein grown in Gizan region. Int. J. Agric. Biol. Sci., 2010, 1 (2), 88-94.Google Scholar

  • 2. ACNFP 1996. Report on seeds from narrow leafed lupin. Appendix IX MAFF Publications, London GB, pp.107.Google Scholar

  • 3. Adamidou S., Nengas I., Grigorakis K., Nikolopoulou D., Jauncey K., Chemical composition and antinutritional factors of fi eld peas (Pisum sativum), chickpeas (Cicer arietinum), and faba beans (Vicia faba) as affected by extrusion preconditioning and drying temperatures. Cereal Chem., 2011, 88, 80-86.CrossrefGoogle Scholar

  • 4. Ali F., Mondor M., Ippersiel D., Lamarche F., Production of lowphytate soy isolate by membrane technologies: Impact of salt addition to the extract on the purifi cation process. Innov. Food Sci. Emer. Technol., 2011, 12 (2), 171-177.CrossrefGoogle Scholar

  • 5. Alonso R., Orue E., Marzo F., Effects of extrusion and conventional processing methods on protein and antinutritional factor contents in pea seeds. Food Chem., 1998, 63 (4), 505-512.CrossrefGoogle Scholar

  • 6. ANZFA (Australia New Zeland Food Authority) 2001. Lupin alkalids in food. A toxicological review and risk assessment. Techn. Rep., Series 3, pp. 6-19 (http://www.anzfa.gov.au)Google Scholar

  • 7. Aranda P., Dostalova J., Frias J., Lopez-Jurado M., Kozłowska H., Pokorny J., Urbano G., Vidal-Valverde C., Zduńczyk Z., Nutrition. 2001, in: Carbohydrates in grain legume seeds. Improving nutritional quality and agronomic characteristics. (ed. C.L. Hedley). CAB International, Wallingford, UK, pp. 61-87.Google Scholar

  • 8. Avola G., Gresta F., Abbate V., Diversity examination based on physical, technological and chemical traits in a locally grown landrace of faba bean (Vicia faba L. var major). Int. J. Food Sci. Tech., 2009, 44 (12), 2568-2576.CrossrefGoogle Scholar

  • 9. Barampama Z., Simard R.E., Nutrient composition, protein quality and antinutritional factors of some varieties of dry beans (Phaseolus vulgaris) grown in Burundi. Food Chem., 1993, 47 (2), 159-167.CrossrefGoogle Scholar

  • 10. Bastianelli D., Grosjean F., Peyronnet C., Duparque M., Régnier J.M., Feeding value of pea (Pisum sativum L.) 1. Chemical composition of different categories of pea. Anim. Sci., 1998, 67 (3), 609-619.Google Scholar

  • 11. Bednarczyk M. Urbanowski M., Gulewicz P., Kasperczyk K., Maiorano G., Szwaczkowski T., Field and in vitro study on prebiotic effect of raffi nose family oligosaccharides in chickens. Bull. Vet. Inst. Pulawy, 2011, 55, 465-469.Google Scholar

  • 12. Belal N.G., Abdelati K. A., Albala S., Elawad S., Effect of dietary processed cowpea (Vigna unguiculata) seeds on broiler performance and internal organ weights. Res. J. Anim. Vet. Sci., 2011, 6, 6-11.Google Scholar

  • 13. Benítez V., Cantera S., Aguilera Y., Mollá E., Esteban R.M., Díaz M.F., Martin-Cabrejas M.A., Impact of germination on starch, dietary fi ber and physicochemical properties in non-conventional legumes. Food Res. Int., 2013, 50, 64-69.CrossrefGoogle Scholar

  • 14. Benjakul S., Visessanguan W., Thummaratwasik P., Isolation and characterization of trypsin inhibitors from some Thai legumes. J. Food Biochem., 1999, 24, 107-127.Google Scholar

  • 15. Birk Y., Plant Protease Inhibitors: Signifi cance in nutrition, plant protection, cancer prevention and genetic engineering. Springer- -Verlag Germany, 2003, pp 12-43.Google Scholar

  • 16. Blair M.W., Sandoval T.A., Caldas G.V., Beebe S.E., Páes, M.I., Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci., 2009, 49, 237-246.CrossrefGoogle Scholar

  • 17. Bulletin Offi ciel No98/27 du Conseil superieur d’hygiene publique de France 1998Google Scholar

  • 18. Burbano C., Cuadrado C., Varela A., Guillamón E., Pedrosa M.M., Goyoaga C., Muzquiz M., Content and distribution of vicine, convicine and l-DOPA during germination and seedling growth of two Vicia faba L. varieties. Eur. Food Res. Technol., 2008, 227, 1537-1542.Google Scholar

  • 19. Buyukcapar H.M., Kamalak A., Condensed tannin contents of some legume seeds used in fi sh nutrition. J. Biol. Sci., 2007, 7, 74-76.Google Scholar

  • 20. Caldas, G.V., Blair, M.W., Inheritance of seed condensed tannins and their relationship with seed coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 2009, 119, 131-142.CrossrefGoogle Scholar

  • 21. Campos J.E., Whitaker J.R., Yip T.T., Hutchens T.W., Labra, A.B., Unusual structural character and complete amino acid sequence of a protease inhibitor from Phaseolus acutifolius seeds. Plant Physiol. Biochem., 2004, 42, 209-214.CrossrefGoogle Scholar

  • 22. Campos-Vega R., Loarca-Piña G.F., Oomah B.D., Minor components of pulses and their potential impact on human health. Food Res. Int., 2010, 43, SI, 461-482.CrossrefGoogle Scholar

  • 23. Carbonaro M., Grant G., Cappelloni M., Pusztai A., Perspectives into factors limiting in vivo digestion of legume proteins: antinutritional compounds or storage proteins? J. Agric. Food Chem., 2000, 48, 742-749.CrossrefGoogle Scholar

  • 24. Cardador-Martínez A., Maya-Ocaña K., Ortiz-M oreno A., Herrera- C abrera B.E., Dávil a-Ortiz G., Múzquiz M., Pedrosa M.M., B urbano C., Cuadrado C., Jiménez-Martínez C., Effect of roasting and boiling on the content of vicine, convicine and L-3,4- -dihydroxyphenylalanine in Vicia faba L. J. Food Qual., 2012, 35 (6), 41 9-428.Google Scholar

  • 25. Chango A. , Villaume C., Bau H. M., Nikolas J.P., Mejean L., Debittering of lupin (Lupinus luteus L) protein by calcium alginate and nutritional evaluation. J. Sci. Food Agric., 1993, 63 (2), 195-200.CrossrefGoogle Scholar

  • 26. Chen Y.W., Huang S.C., Lin-Shiau S.Y., Lin J.K., Bowman-Birk inhibitor abates proteasome function and suppresses the proliferation of MCF7 breast cancer cells through accumulation of MAP kinase phosphatase-1. Carcinogenesis, 2005, 26, 1296- -1306.Google Scholar

  • 27. Chen H., Liu L.J., Zhu J.J., Xu B., Li R., Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes in high fat rats. Food Chem., 2010, 119, 1633-1636.CrossrefGoogle Scholar

  • 28. Chilomer K., Zaleska K., Ciesiołka D., Gulewicz P., Frankiewicz A., Gulewicz K., Changes in the alkaloid, α-galactoside and protein fraction content during germination of different lupin spcies. Acta Soc. Bot. Pol., 2010, 79 (1), 11-20.CrossrefGoogle Scholar

  • 29. Chitra U., Vimala V., Singh U., Geervani P., Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum. Nutr., 1995, 47, 163-172.Google Scholar

  • 30. Chokshi D., Toxicity studies of Blockal, a dietary supplement containing Phase 2 Starch Neutralizer (Phase 2), a standardized extract of the common white kidney bean (Phaseolus vulgaris). Int. J. Toxicol., 2006, 25, 361-371.CrossrefGoogle Scholar

  • 31. Chu H.-B., Li D.-M., Shi B., Huang K.-X., Xin J.-L., Effects of soybean saponin on NOX4 and p22phox expressions in diabetic rat myocardium tissues and its protective effect on myocardium. Journal of Jilin University Medicine Edition, 2013, 39 (2), 251-254.Google Scholar

  • 32. Ciesiołka D., Gulewicz P., Matinez-Villaluenga C., Pilarski R., Bednarczyk M., Gulewicz K., Products and biopreparations from alkaloid-rich lupin in animal nutrition and ecological agriculture. Folia Biol.-Krakow, 2005, 53, 60-66. Suppl.Google Scholar

  • 33. Crepon K., Marget P., Peyronnet C., Carrouee B., Arese P., Duc G., Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res., 2010, 115, SI, 329-339.Google Scholar

  • 34. Cuadrado C., Hajos G., Burbano C., Pedrosa M.M., Ayet G., Muzquiz M., Pusztai A., Gelencser E., Effect of natural fermentation on the lectin content of lentils measured by immunological methods. Food Agri. Immunol., 2002, 14, 41-49.CrossrefGoogle Scholar

  • 35. Doblado R., Frias J., Muñóz R., Vidal-Valverde C., Fermentation of Vigna sinensis var. carilla fl ours by natural microfl ora and Lactobacillus species. J. Food Prot., 2003, 66, 2313-2320.Google Scholar

  • 36. Doblado R., Zielinski H., Piskula M., Kozłowska H., Muñoz R., Frias J., Vidal-Valverde C., Effect of processing on the antioxidant vitamins and antioxidant capacity of Vigna sinensis var. Carilla. J. Agric. Food Chem., 2005, 53, 1215-1222.CrossrefGoogle Scholar

  • 37. Doblado R., Frias J., Vidal-Valverde C., Changes in vitamin C and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var Carilla) induced by high-pressure treatment. Food Chem., 2007, 101, 918-923.CrossrefGoogle Scholar

  • 38. Drużyńska B., Klepacka M., Antioxidant properties polyphenolic preparations from seed cover of black, pink and white bean (Phaseolus). Zywn.-Nauk Technol. Jakość, 2004, 4, 69-78 (in Polish; English abstract).Google Scholar

  • 39. Duc G., Marget P., Esnault R., Le Guen J., Bastianelli D., Genetic variability for feeding value of faba bean seeds (Vicia faba L.). Comparative chemical composition of isogenics involving zero- -tannin and zero-vicine genes. J. Agric. Sci., 1999, 133, 185-196.CrossrefGoogle Scholar

  • 40. Dueñas M., Fernandez D., Hernández T., Estrella I., Muñoz R., Bioactive phenolic compounds of cowpea (Vigna sinensis L). Modifi cations by fermentation with natural microfl ora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 2005, 85, 297-304.Google Scholar

  • 41. Dueñas M., Hernández T., Estrella I., Assessment of the in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem., 2006, 98, 95-103.CrossrefGoogle Scholar

  • 42. Duranti M., Grain legume proteins and nutraceutical properties. Fitoterapia, 2006, 77, 67-82.CrossrefGoogle Scholar

  • 43. Egli I., Davidsson L., Juillerat M.A., Barclay D., Hurrell R.F., The infl uence of soaking and germination on the phytase activity and phytic acid content of grains and seeds pontentially usefull for complementary feeding. J. Food Sci., 2002, 67, 3484-3488.CrossrefGoogle Scholar

  • 44. Elmaki H.B., Abdel-Rahman S.M., Idris W.H., Hassan A.B., Babiker E.E., El- Tinay A.H., Content of antinutritional factors and HCl-extractability of mineral from white bean (Phaseolus vulgaris). Cultivars: Infl uence of soaking and/or cooking. Food Chem., 2007, 100, 362-368.CrossrefGoogle Scholar

  • 45. Embaby H.E.-S., Effect of soaking, dehulling, and cooking methods on certain antinutrients and in vitro protein digestibility of bitter and sweet lupin seeds. Food Sci. Biotechnol., 2010, 19(4), 1055-1062.CrossrefGoogle Scholar

  • 46. Emiola I.A., Gous R.M., Nutritional evaluation of dehulled faba bean (Vicia faba cv. Fiord) in feeds for weaner pigs. South African Soc. Animal Sci., 2011, 41 (2), 79-86.Google Scholar

  • 47. Erbas M.,The effects of different debittering methods on the production of lupin bean snack from bitter Lupinus albus L. seeds. J. Food Qual., 2010, 33 (6), 742-757.CrossrefGoogle Scholar

  • 48. Fernandez-Orozco R., Frias J., Muñoz R., Zielinski H., Piskula M.K., Kozłowska H., Vidal-Valverde C., Fermentation as a bioprocess to obtain functional soybean fl ours. J. Agric. Food Chem., 2007, 55, 8972-8979.CrossrefGoogle Scholar

  • 49. Fernandez-Orozco R., Frias J., Zielinski H., Piskula M.K., Kozłowska H., Vidal-Valverde C., Kinetic study of the antioxi dant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chem., 2008a, 111, 622-630.CrossrefGoogle Scholar

  • 50. Fernandez-Orozco R., Frias J., Muñoz R., Zielinski H., Piskula M.K., Kozłowska H., Vidal-Valverde C., Effect of fermentation conditions on the antioxidant capacity of Lupinus angustifolius cv. Zapaton. Eur. Food Res. Technol., 2008b, 227, 979-988.Google Scholar

  • 51. Filippetti A., Azadegan G.H., De Pace C., Breeding strategies for seed protein content and trypsin inhibitors inferred from combining abaility and heterosis in test-crosses of Vicia faba. Plant Breeding, 1999, 118 (5), 411-416.CrossrefGoogle Scholar

  • 52. Frias J., Diaypollan C., Hedlez C.L., Vidal-Valverde C., Evolution of tripsin+inhibitor activity during germination of lentils. J. Agr. Food Chem., 1995, 43 (8), 2231-2234.CrossrefGoogle Scholar

  • 53. Frias J., Diaz-Pollan C., Hedley C.L., Vidal-Valverde C., Evolution and kinetics of monosacharide, disaccharide and α-galactosides during germination of lentils. Z. Lebensm. Unters. Forsch., 1996a, 202, 35-39.Google Scholar

  • 54. Frias J., Vidal-Valverde C., Kozłowska H., Górecki R., Honke J., Hedley C.L., Evolution of soluble carbohydrates during the development of pea, faba bean and lupin seeds. Z Lebensm. Unters. Forsch. 1996b, 203, 27-32.Google Scholar

  • 55. Frias J., Vidal-Valverde C., Kozłowska H., Tabera J., Honke J., Hedley C.L., Natural fermentation of lentils. Infl uence of time, concentration and temperature on the kinetics of monosaccharide, disaccharide and a-galactosides. J. Agric. Food Chem., 1996c, 44, 579-584.CrossrefGoogle Scholar

  • 56. Frias J., Fornal J., Ring S.G., Vidal-Valverde C., Effect of germination on physico-chemical properties of lentil starch and its components. LWT - Food Sci. Technol., 1998, 31, 228-236.Google Scholar

  • 57. Frias J., Doblado R., Vidal-Valverde C., Kinetics of soluble carbohydrates by action of endo/exo α-galactosidase enzyme in lentils and peas. Eur. Food Res. Technol., 2003a, 216, 199-203.Google Scholar

  • 58. Frias J., Doblado R., Antezana J.R., Vidal-Valverde C., Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem., 2003b, 81, 233-239.CrossrefGoogle Scholar

  • 59. Frias J., Miranda M.L., Doblado R., Vidal-Valverde C., Effect of germination and fermentation in the antioxidant vitamin content and antioxidant capacity of L. albus L. var. Multolupa. Food Chem., 2005, 92, 211-220.CrossrefGoogle Scholar

  • 60. Frias J., Song Y. S., Martinez-Villaluenga C., Gonzalez de Mejía E., Vidal-Valverde C., Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem., 2008, 56, 99-105.CrossrefGoogle Scholar

  • 61. Frias J., Giacomino S., Peñas E., Pellegrino N., Ferreyra N., Apro V., Olivera- Carrión M., Vidal-Valverde C., Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. Laguna seeds. LWT - Food Sci. Technol., 2011,44, 1303-1308.Google Scholar

  • 62. Fu L., Zhou C., Yao S., Yu J., Liu B., Bao J., Plant lectins: Targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell Biol., 2011, 43, 1442-1449.CrossrefGoogle Scholar

  • 63. Gabriel I., Lessire M., Juin H., Burstin J., Duc G., Quillien L., Thibault J.N., Leconte M., Hallouis J.M., Ganier P., Meziere N., Seve B., Variation in seed protein digestion of different pea (Pisum sativum L.) genotypes by cecectomized broiler chickens: 1. endogenous amino acid losses, true digestibility and in vitro hydrolysis of proteins. Livestock Sci., 2008, 113, 251-261.Google Scholar

  • 64. Ghavidel R. A., Prakash J., The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT - Food Sci. Technol., 2007, 40, 1292-1299.Google Scholar

  • 65. Glencross B.D., Boujard T., Kaushik S.J., Infl uence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout Oncorhynchus mykiss. Aquaculture, 2003, 219, 703-713.Google Scholar

  • 66. Goel G., Puniya A.K, Aguilar C.F.N., Singh K., Interaction of gut microfl ora with tannin in feeds. Naturwissenschaften, 2005, 92 (11), 497-503.CrossrefGoogle Scholar

  • 67. Goyoaga C., Burbano C., Cuadrado C., Romero C., Guillamón E., Varela A., Pedrosa M.M., Muzquiz M., Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. J. Food Comp. Anal., 2011, 24 (3), 391-397.CrossrefGoogle Scholar

  • 68. Granito M., Frias J., Doblado R., Guerra M., Champ M., Vidal- Valverde C., Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. Eur. Food Res. Technol., 2002, 214, 226-231.Google Scholar

  • 69. Guillamon E., Pedrosa M.M., Burbano C., Cuadrado C., de Cortes Sanchez M., Muzquiz M., The tripsin inhibitors present in seed different grain legume species and cultivar. Food Chem., 2008, 107 (1), 68-74.CrossrefGoogle Scholar

  • 70. Guimarães-Beelen P.M., Teresinha Berchielli T., Beelen R., Araújo Filho J., de Oliveira S.G., Characterization of condensed tannins from native legumes of the Brazilian northeastern semi-arid. Sci. Agric. (Piracicaba, Braz.), 2006, 63, 522-528.Google Scholar

  • 71. Gulewicz K., Method of lupin seeds debittering 1991a. Poland, patent No 152748 (in Polish).Google Scholar

  • 72. Gulewicz K., Method of lupin seeds debittering 1991b. Poland, patent No 153195 (in Polish).Google Scholar

  • 73. Gulewicz K., Studies on complex utilization of protein and other components from bitter lupin seeds. 1988, in: Habitation dissertation (ed. K. Gulewicz) Polish Academy of Sciences Poznań, Poland (in Polish).Google Scholar

  • 74. Gulewicz K., Lupin oligosaccharides in diet - arduous or healthy factor? Procc. Polish Lupin Con. 1998. Przysiek near Toruń Proc. National Scientifi c Seminar “Lupin in the ecological agriculture” Przysiek k. Torunia 23.IX.1998. pp.11-23 (in Polish).Google Scholar

  • 75. Gulewicz K., Pilarski R., Legume α-galactosides and their biological activity. In Proc. 11th Inter. Lupin Conference “Mexico, where old and new word lupins meet”. Mexico, 4-9 May 2005. pp.198-205.Google Scholar

  • 76. Gulewicz P., Ciesiołka D., Frias J., Vidal-Valverde C., Freinagel S., Trojanowska K., Gulewicz K., Simple method of isolation and purifi cation of alpha-galactosides from legumes. J. Agric. Food Chem., 2000, 48, 3120-3123.CrossrefGoogle Scholar

  • 77. Gulewicz P., Szymaniec S., Bubak B., Frias J., Vidal-Valverde C., Trojanowska K., Gulewicz K., Biological activity of alpha galactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds. J. Agric. Food Chem., 2002, 50, 384-389.CrossrefGoogle Scholar

  • 78. Gulewicz P., Martınez-Villaluenga C., Frias J., Ciesiołka D., Gulewicz K., Vidal-Valverde C., Effect of germination on the protein fraction composition of different lupin seeds. Food Chem., 2008, 107, 830-844.CrossrefGoogle Scholar

  • 79. Gupta P., Dhawan K., Malhotra S.P., Singh R., Purifi cation and characterization of trypsin inhibitor from seeds of faba bean (Vicia faba L). Acta Physiol. Plantarum, 2000, 22, 433-438.CrossrefGoogle Scholar

  • 80. Gurfi nkel D. M.,Rao A.V., Determination of saponins in legumes by direct densitometry J. Agric. Food Chem., 2002, 50(3), 426- -430.Google Scholar

  • 81. Gutierrez N., Avila C.M., Duc G., Marget P., Suso M.J., Moreno M.T., Torres A.M., CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). Theor. Appl. Genetics, 2006, 114, 59-66.CrossrefGoogle Scholar

  • 82. Han I.H., Baik B.K., Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chem., 2006, 83(4), 428-433.CrossrefGoogle Scholar

  • 83. Hassanpour S., Maherisis N., Eshratkhah B., Baghbani Mehmandar F., Plants and secondary metabolites (Tannins): A Review. Inter. J. Forest Soil Erosion (IJFSE), 2011, 1(1).Google Scholar

  • 84. Hassanpour S., Baghbani Mehmandar F., Anthelmintic effects of Acacia mearnsii (wattle tannin) in small ruminants; a review.J. Comp. Clin. Path Res., 2012, 1(1), 1-8.Google Scholar

  • 85. Hurrell R.F., Reddy M.B., Juillerat M.A., Cook J.D., Degradation of phytic acid in cereal po rridges improves iron absorption by human subjects. Am. J. Clin. Nutr., 2003, 77, 1213-1219.Google Scholar

  • 86. Jimenez-Martinez C., Mora-Escobedo R., Cardador Martí nez A., Muzquiz M., Martin Pedrosa M., Dá vila-Ortiz G., Effect of aqueous, acid, and alkaline thermal treatments on antinutritional factors content and protein quality in Lupinus campestris seed fl our. J. Agric. Food Chem., 2010, 58 (3), 1741-1745.Google Scholar

  • 87. Joanitti G.A., Azevedo R.B., Freitas S.M., Apoptosis and lysosome membrane permeabilization induction on breast cancer cells by an anticarcinogenic Bowman-Birk protease inhibitor from Vigna unguiculata seeds. Cancer Lett., 2010, 293, 73-81.Google Scholar

  • 88. Kadlec P., Bjergegaard C.H., Gulewicz K., Horbowicz M., Jones A., Knita P., Kratchanov Ch., Kratchanowa M., Lewandowicz G., Soral-Smietana M., Sorensen H., Urban J., Carbohydrate chemistry. 2001, in: Carbohydrates in legume seeds. improving nutritional quality and agronomic characteristics.(ed. C.L. Hedley ), CABI Publishing New York, pp.15-60.Google Scholar

  • 89. Kaplan H., Hutkins R.W., Fermentation of fructooligosaccharides by lactic acid bacteria and bifi dobacteria. Appl. Environ. Microbiol., 2000, 66, 2682-2684.CrossrefGoogle Scholar

  • 90. Khattab R.Y., Arntfi eld S.D., Nutritional quality of legume seeds as affected by some physical treatments. 2. Antinutritional factors. LWT - Food Sci. Tech., 2009, 42, 1113-1118.Google Scholar

  • 91. Kobayashi M., Nagatani Y., Magishi N., Tokuriki N., Nakata Y., Tsukiyama R., Imai H., Suzuki M., Saito M., Tsuji K. Promotive effect of Shoyu polysaccharides from soy sauce on iron absorption in animals and humans. Int. J. Mol. Med., 2006, 18, 1159-1163.Google Scholar

  • 92. Kovalchuk N.V., Dynamic of lectin activity during bean seed Phaseolus vulgaris L. germination. Ukrain’skyi Biokhimichnyi Zhurnal, 2006, 78,130-134.Google Scholar

  • 93. Kozłowska H., Aranda P., Dostalova J., Frias J., Lopez-Jurando M., Pokorny J., Urbano G., Vidal-Valverde C., Zduńczyk Z., Nutrition. 2001, in: Carbohydrates in legume seeds. Improving nutritional quality and agronomic characteristics.(ed. C.L. Hedley), CABI Publishing New York, pp. 61-88.Google Scholar

  • 94. Kozłowska H., Honke J., Sadowaska J., Frias J., Vidal-Valverde C., Natural fermentation of lentils. Infl uence of time, concentration and temperature on the kinetics of hydrolysis of inositol phosphates. J. Sci. Food Agric., 1996, 71, 367-375.CrossrefGoogle Scholar

  • 95. Krishnamurthy P., Tsukamoto C., Yang S.H., Lee J.D., Chung G., An improved method to resolve plant saponins and sugars by TLC. Chromatographia, 2012, 75, 1445-1449.CrossrefGoogle Scholar

  • 96. Kumar V., Sinha A.K., Makkar H.P.S., Becker K., Dietary roles of phytate and phytase in human nutrition: A review. Food Chem., 2010, 120, 945-959.CrossrefGoogle Scholar

  • 97. Kuo Y.H., Rozan P., Lambein F., Frias J., Vidal-Valverde C., Effect of different germination conditions on the content of free protein and non-protein amino acids of commercial legumes. Food Chem., 2004, 86, 537-545.CrossrefGoogle Scholar

  • 98. Liang J., Han B.Z., Nout M.J.R., Hamer R.J., Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem., 2008, 110, 821-828.CrossrefGoogle Scholar

  • 99. Liebisch H.W., Schutte H.R., Lysine-derived alkaloids. 1985, in: Biochemistry of alkaloids. (eds. K. Montes, H.R. Schutte, M. Luckner). VEB Deusther Verlag der Wissenschaften Berlin pp. 150-157.Google Scholar

  • 100. Liener I.E., Plant Lectin: Properties, nutritional signifi cance and function. 1997, in: Antinutrients and phytochemicals in food (ed. F. Shahidi). American Chemcal Society Washington, D.C. pp. 31-43.Google Scholar

  • 101. Lonnerdal B., Sandberg A.S., Sandstorm B., Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J. Nutr., 1989, 119 (2), 211-214.Google Scholar

  • 102. Lopez- Amorós M.L., Hernandez T., Estrella I., Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal., 2006, 19, 277-283.CrossrefGoogle Scholar

  • 103. Marquardt R.R., Ward A.T., Evans L.E., Comparative properties of tannin-free and tannin-containing cultivars of faba beans (Vicia faba). Can. J. Plant Sci., 1978, 58, 753-760.CrossrefGoogle Scholar

  • 104. Martin-Cabrejas M.A., Díaz M.F., Aguilera Y., Benítez V., Mollá E., Esteban R.M., Infl uence of germination on the soluble carbohydrates and dietary fi bre fractions in non-conventional legumes. Food Chem., 2008, 107, 1047-1052Google Scholar

  • 105. Martinez-Villaluenga C., Frias J., Vidal-Valverde C., Raffi nose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chem., 2005, 91(4), 645-649.CrossrefGoogle Scholar

  • 106. Martinez-Villaluenga C., Frias J., Vidal-Valverde C., Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chem., 2006a, 98, 291-299.CrossrefGoogle Scholar

  • 107. Martínez-Villaluenga C., Kuo Y-H., Lambein F., Frias J., Vidal- -Valverde C., Kinetics of free protein amino acids, free non- -protein amino acids and trigonelline in soybean (Glycine max L.) and lupin (Lupinus angustifolius L.) sprouts. Eur. Food Res. Technol., 2006b, 224, 177-186.CrossrefGoogle Scholar

  • 108. Martinez-Villaluenga C., Frias J., Vidal-Valverde C., Alpha- -galactosides: antinutritional factors or functional ingredients? Crit. Rev. Food Sci. Nutr., 2008a, 48, 301-316.CrossrefGoogle Scholar

  • 109. Martınez-Villaluenga C., Gulewicz P., Frias J., Gulewicz K., Vidal-Valverde C., Assessment of protein fractions of three cultivars of Pisum sativum L.: effect of germination. Eur. Food Res. Technol., 2008b, 226, 1465-1478.CrossrefGoogle Scholar

  • 110. Muzquiz M., Ridout C.L., Price K.R., Fenwick G.R., The saponin content and composition of sweet and bitter lupin seeds. J. Sci. Food Agric., 1993, 63(1), 47-52.CrossrefGoogle Scholar

  • 111. Muzquiz M., Burbano C., Pedrosa M.M., Folkman W., Gulewicz K., Lupins as a potential source of raffi nose family oligosaccharides: Preparative method for their isolation and purifi - cation. Ind. Crops Prod., 1999, 9(3), 183-188.CrossrefGoogle Scholar

  • 112. Muzquiz M., Varela A., Burbano C., Cuadrado C., Guillamon E., Pedrosa M.M., Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev., 2012, 11, SI, 227-244.CrossrefGoogle Scholar

  • 113. Oakenfull D., Saponins in food - a review. Food Chem., 1981, 7 (1), 19-31.CrossrefGoogle Scholar

  • 114. Obendorf R.L., Górecki R.J., Soluble carbohydrates in legume seeds. Seed Sci. Res., 2012, 22, 219-242.CrossrefGoogle Scholar

  • 115. Oboh H.A., Muzquiz M., Burbano C., Cuadrado C., Pedrosa M.M., Ayet G., Osagie A.U., Effect of soaking, cooking and germination on the oligosaccharide content of selected Nigerian legume seeds. Plant Food Hum. Nutr., 2000, 55, 97-110.CrossrefGoogle Scholar

  • 116. Oomah B.D., Caspar F., Malcolmson L.J., Bellido A.-S., Phenolics and antioxidant activity of lentil and pea hulls. Food Res. Int., 2011, 44, 436-441.CrossrefGoogle Scholar

  • 117. Page D., Quillien L., Duc G., Trypsin inhibitory measurement: Simplifi cation of the standard procedure used for pea seed. J. Crop Sci., 2000, 40, 1482-1485.CrossrefGoogle Scholar

  • 118. Peñas E., Gómez R., Frias J., Vidal-Valverde C., Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Contr., 2010, 21, 82-88.CrossrefGoogle Scholar

  • 119. Peñas E., Gómez R., Frias J. Baeza M.L., Vidal-Valverde C., High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chem., 2011, 125, 423-429.CrossrefGoogle Scholar

  • 120. Peterbauer T., Lahuta L.B., Blochl A., Mucha J., Jones D.A., Hedley C.L., Górecki R.J., Richter A., Analysis of the raffi - nose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol., 2001, 127, 1764-1772.CrossrefGoogle Scholar

  • 121. Petterson D.S., Ellis Z.L., Harris J., Spadek Z.E., Acute toxicity of the major alkaloids of cultivated Lupinus angustifolius seed to rats. J. Appl. Toxicol., 1987, 7(1), 51-53.CrossrefGoogle Scholar

  • 122. Plahar W.A., Annan N.T., Nti C.A., Cultivar and processing effects on the pasting characteristics, tannin content and protein quality and digestibility of cowpea (Vigna unguiculata). Plant Foods Hum. Nutr., 1997, 51(4), 343-356.Google Scholar

  • 123. Pleszczyńska M., Szczodrak J., Tannins and their enzymatic degradation. Biotechnologia, 2005, 68, 152-165 (in Polish; English abstract).Google Scholar

  • 124. Prodanov M., Sierra I., Vidal-Valverde C., Effect of germination on the thiamin, ribofl avin and niacin contents in legumes. Z. Lebensm. Unters. Forsch., 1997, 205, 48-52.CrossrefGoogle Scholar

  • 125. Pusztai A., Grant G., Assessment of lectin inactivation by heat and digestion. 1998, in: Lectin Methods and Protocols.(eds. J.M. Rhodes, J.D. Milton), Humana Press Inc; Totowa, NJ, USA. pp. 505-513.Google Scholar

  • 126. Rada V., Bartonová J., Vlková E., Specifi c growth rate of Bifi - dobacteria cultured on different sugars. Folia Microb., 2002, 47, 477-480.Google Scholar

  • 127. Rasha M.K., Abou-Arab E.A., Gibriel A.Y., Rasmy N.M.H., Abu-Salem F. M., Effect of legume processing treatments individually or in combination on their phytic acid content. African J. Food Sci. Technol., 2011, 2(2), 036-046.Google Scholar

  • 128. Reddy N.R., Pierson M.D., Sathe S.K., Salunkhe D.K., Dry bean tannins: A review of nutritional implications. J. Am. Oil Chem. Soc., 1985, 62, 541-549.CrossrefGoogle Scholar

  • 129. Rodriguez C., Frias J., Vidal-Valverde C., Hernandez A., Total chemically available (free and intrachain) lysine and furosine in pea, bean, and lentil sprouts. J. Agric. Food Chem., 2007, 55, 10275-10280.CrossrefGoogle Scholar

  • 130. Safavi F., Rostami A., Role of serine proteases in infl ammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp. Mol. Pat., 2012, 93 (3), 428-433.CrossrefGoogle Scholar

  • 131. Saghai Maroof M.A., Glover N.M., Biyashev R.M., Buss G.R., Grabau E.A., Genetic basis of the low-phytate trait in the soybean line CX1834. Crop Sci., 2009, 49, 69-76.Google Scholar

  • 132. Sammour R.H.A., Isolation and characterization of 4 isoinhibitors from cowpea (Vigna angularis) walp seeds. Tur. J. Biol., 2005, 30, 207-215.Google Scholar

  • 133. Sandstrom B., Sandberg A.S., Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J. Trace Elem. Electrol. Health Dis., 1992, 6, 99-103.Google Scholar

  • 134. Sangronis E., Machado C.J., Infl uence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT - Food Sci. Technol., 2007, 40, 6-12.Google Scholar

  • 135. Sanz M.A., Blázquez I., Sierra I., Medrano M.A., Frias J., Vidal-Valverde C., Hernández A., Nutritional evaluation of ethanol-extracted lentil fl ours. J. Agric. Food Chem., 2001, 49 (4), 1854-1860.CrossrefGoogle Scholar

  • 136. Sendra E., Fayos P., Lario Y., Fernández-López J., Sayas-Barberá E., Pérez-Alvarez J., Incorporation of citrus fi bers in fermented milk containing probiotic bacteria. Food Microbiol., 2008, 25, 13-21.CrossrefGoogle Scholar

  • 137. Shi J., Arunasalam K., Yeung D., Kakuda Y., Mittal G., Jiang Y., Saponins from edible legumes: Chemistry processing and halth benefi ts. J. Med. Food., 2004, 7, 67-78.CrossrefGoogle Scholar

  • 138. Singh U., Cooking quality of pulses. J. Food Sci. Technol., 1999, 36, 1-14.Google Scholar

  • 139. Singh U., Jambunatham R., Studies on desi and kabuli chickpea (Cicer arietinum L.) cultivars - levels of protease inhibitors, levels of polyphenolic compounds and in vitro digestibility. J. Food Sci., 1981, 46, 1364-1367.CrossrefGoogle Scholar

  • 140. Song Y.S., Pérez V.G., Pettigrew J.E., Martinez-Villaluenga C., Gonzalez de Mejia E., Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed Sci. Technol., 2010, 159, 41-49.CrossrefGoogle Scholar

  • 141. Steer T.E., Gibson G.R., The microbiology of phytic acid metabolism by gut bacteria and relevance for bowel cancer. Int. J. Food Sci. Technol., 2002, 37, 783-790.CrossrefGoogle Scholar

  • 142. Svanberg U., Lorri W., Fermentation and nutrient availability. Food Contr., 1997, 8, 319-327.CrossrefGoogle Scholar

  • 143. Sze L.L., Tzi B.N., Lectins: production and practical applications. Appl. Microbiol. Biotechnol., 2011, 89(1), 45-55.Google Scholar

  • 144. Świeca M., Baraniak B., Gawlik-Dziki U., In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem., 2013, 138, 1414-1420.CrossrefGoogle Scholar

  • 145. Tabera J., Frias J., Estrella I., Villa R., Vidal-Valverde C., Natural fermentation of lentils. Infl uence of time, concentration and temperature on protein content, trypsin inhibitor activity and phenolic compound content. Z. Lebensm. Unters. Forsch., 1995, 201, 587-591.CrossrefGoogle Scholar

  • 146. Tan N.H., Eunice Lowe S.H., Iskandar M., The extractability of winged bean (Phospocarpus tetragonolobus) seed trypsin inhibitors. J. Sci. Food Agric., 1982, 33,1327-1330.CrossrefGoogle Scholar

  • 147. Tandon M., Siddique R.A., Ambwani T., Role of bypass proteins in ruminant production. Dairy Planner, 2008, 4 (10), 11-14.Google Scholar

  • 148. Thavarajah D., Thavar ajah P., See C.T., Vandenberg A., Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is infl uenced by temperature during seed fi lling period. Food Chem., 2010, 122, 254-259.CrossrefGoogle Scholar

  • 149. Tomomatsu H., Health effect of oligosaccharides. Food Technol., 1994, 48, 61-65.Google Scholar

  • 150. Torres A., Frias J., Granito M., Vidal-Valverde C., Fermented pigeon pea (C. cajan) ingredients in pasta products. J. Agric. Food Chem., 2006, 54, 6685-6691.CrossrefGoogle Scholar

  • 151. Torres A., Frias J., Granito M., Vidal-Valverde C., Título: Germinated Cajanus cajan seeds as ingredients in pasta products. Chemical, biological and sensory evaluation. Food Chem., 2007, 101, 202-211.CrossrefGoogle Scholar

  • 152. Trafalska E., Grzybowski A., Probiotics and prebiotics in prevention of chronic civilization diseases. New Med., 2006, 1, 3-6.Google Scholar

  • 153. Trindade M.I., Abratt V.R., Reid S.J.,. Indu ction of sucrose utilization genes from Bifi dobacterium lactis by sucrose and raffi nose. Appl. Environ. Microbiol., 2003, 69, 24-32.CrossrefGoogle Scholar

  • 154. Uauy R., Gattas V., Yaneze E., Sweet lupins in human nutrition. World Rev. Nutr. Diet.,1995, 77, 75-88.Google Scholar

  • 155. Urbano G., Aranda P., Gomez-Villalva E., Frejnagel S., Porres J.M., Frias J., Vidal-Valverde C., Lopez -Jurado M., Nutritional evaluation of pea (Pisum sativum L.) protein diets after mild hydrothermal treatment and with and without added phytase. J. Agric. Food Chem., 2003, 51, 2415-2420.CrossrefGoogle Scholar

  • 156. Urbano G., López-Jurado M., Frejnagel S., Gómez-Villalva E., Porres J.M., Frias J., Vidal-Valverde C., Aranda P., Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 2005, 21, 230-239.CrossrefGoogle Scholar

  • 157. Urbano G., Lopez-Jurado M., Hernandez J., Fernandez M., Moreu M.C., Frias J., Diaz-Pollan C., Prodanov M., Vidal- -Valverde C., Nutritional assessment of raw, heated, and germinated lentils. J. Agric. Food Chem., 1995, 43,1871-1877.CrossrefGoogle Scholar

  • 158. van Loo J., Cummings J., Delzenne N., Englyst H., Franck A., Hopkins M., Kok N., MacFarlane G., Newton D., Quigley M., Roberfroid M., van Vliet T., van den Heuvel E., Functional food properties of non digestible oligosaccharides: a consensus report from ENDO project (DGXII AIRII-CT94-1095). Brit. J. Nutr., 1999, 81, 121-132.Google Scholar

  • 159. Van Rhijn P., Fijishige N.A., Lim P.O, Hirsch A.M., Sugar binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol., 2001, 126, 133-144.CrossrefGoogle Scholar

  • 160. Vandenborre G., Smagghe G., Van Damme E.J., Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 2011, 72, 1538-1550.CrossrefGoogle Scholar

  • 161. Vasconcelos I.M., Maia F.M.M., Farias, D.F., Campello C.C., Carvalho A.F.U, de Azevedo Moreira R., de Olivieira, J.T.A., Protein fractions, amino acid composition and antinutritonal constituents of high-yielding cowpea cultivars. J. Food Comp. Anal., 2010, 23, 54-60.CrossrefGoogle Scholar

  • 162. Vasconcelos I.M., Oliveira J.T., Antinutritional properties of plant lectins. Toxicon, 2004, 44(4), 385-40.CrossrefGoogle Scholar

  • 163. Vidal-Valverde C., Frias J., Estrella I., Gorospe M.J., Ruiz R., Bacon J., Effect of processing on some antinutritional factors of lentil. J. Agric. Food Chem., 1994, 42, 2291-2296.CrossrefGoogle Scholar

  • 164. Vidal-Valverde C., Frias J., Sotomayor C., Diaz-Pollan C., Fernandez M., Urbano G., Nutrients and antinutritional factors in faba beans as affected by processing. Z. Lebensm. Unters. Forsch. A., 1998, 207,140-145.Google Scholar

  • 165. Vidal-Valverde C., Frias J., Sierra I., Blazquez I., Lambein F., Kuo Y.H., New functional legume food by germination. Effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Technol., 2002, 215, 472-477CrossrefGoogle Scholar

  • 166. Vidal-Valverde C., Frias J., Hernandez A., Martın-Alvarez P.J., Sierra I., Rodrıguez R., Blazquez I., Vicente G., Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum). J. Sci. Food Agric., 2003, 83, 298-306.CrossrefGoogle Scholar

  • 167. Waghorn G., Benefi cial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production- Progress and challenges. Animal Feed Sci. Technol., 2008, 147, SI, 116-139.Google Scholar

  • 168. Wang H., Provan G.J., Helliwell K., Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci. Technol., 2000, 11, SI, 152-160.Google Scholar

  • 169. Wang N., Hatcher D.W., Gawalko E.J., Effect of variety and processing on nutrients and certain anti-nutrients in fi eld peas (Pisum sativum). Food Chem., 2008a, 111,132-138.Google Scholar

  • 170. Wang C.-H., Lai P., Chen M.-E., Chen H.-L., Antioxidative capacity produced by Bifi dobacterium- and Lactobacillus acidophilus - mediated fermentations of konjac glucomannan and glucomanan oligosaccharides. J. Sci. Food Agri., 2008b, 88, 1294-1300.CrossrefGoogle Scholar

  • 171. Wang N., Hatcher D.W., Toews R., Gawalko E.J., Infl uence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). Food Sci. Technol., 2009, 42, 842-848.Google Scholar

  • 172. Wati R.K., Theppakorn T., Rawdkuen S., Extraction of trypsin inhibitor from three legume seeds of the Royal Project Foundation. As. J. Food Ag-Ind., 2009, 2(03), 245-254.Google Scholar

  • 173. Wilska-Jeszka J., Polyphenols, glucosinolanes and other pronutrients and antinutrients compounds. 2007, in: Chemistry of food. Ingredients of food. (ed. Z.E. Sikorski). WN-T, Warszawa, pp. 206-226 (in Polish).Google Scholar

  • 174. Winiarska-Mieczan A., Bowman-Birk trypsin inhibitors: their structure and value in human and animal feeding. Medycyna Wet., 2007, 63(3), 276-281 (in Polish; English abstract).Google Scholar

  • 175. Wink M., Chemical ecology of alkaloids.1998, in: Alkaloids: biochemistry, ecology and medicinal application (ed. M.F. Roberts, M. Wink). Plenum Press, New York.Google Scholar

  • 176. Wyciór A., Kostyra H., Kuśmierczyk M., Food lectins. Zywn.- Nauk. Technol. Jakość, 2008, 6, 16 - 24 (in Polish).Google Scholar

  • 177. Yamasaki, Y., Satomi, S., Murai, N., Tsuzuki, S., Fushiki, T., Inhibition of membrane-type serine protease 1/matriptase by natural and synthetic protease inhibitors. J. Nutr. Sci. Vitaminol. (Tokyo), 2003, 49, 27-32.Google Scholar

  • 178. Zduńczyk Z., Jankowski J., Juskiewicz J., Słominski B.A., Dietary content and gastrointestinal function of soybean oligosaccharides in monogastric animals. 2010, in: Soybean - biochemistry, chemistry and physiology (ed. Tzi Bun Ng). InTech, Rijecka, Croatia, Chapter 29, pp. 523-540.Google Scholar

  • 179. Zheng R., Yang L., Zhou X., Zhu C., Shu X., Wu X., Li H., Wang L., Bo J., Effect of soybean oligosaccharides in immunity and TLR2--NF-kB signal pathway response for weaning pigs. J. Food Agri. Environ., 2012, 10, 273-279. Google Scholar

About the article

Received: 2013-03-14

Revised: 2013-05-17

Accepted: 2013-07-01

Published Online: 2014-05-27

Published in Print: 2014-06-01

Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 64, Issue 2, Pages 75–89, ISSN (Online) 2083-6007, ISSN (Print) 1230-0322, DOI: https://doi.org/10.2478/v10222-012-0098-9.

Export Citation

© by Piotr Gulewicz. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zuzana Bubelová, Daniela Sumczynski, and Richardos Nikolaos Salek
Journal of Food Processing and Preservation, 2017, Page e13388
Sara C.Q. Magalhães, Marcos Taveira, Ana R.J. Cabrita, António J.M. Fonseca, Patrícia Valentão, and Paula B. Andrade
Food Chemistry, 2017, Volume 215, Page 177

Comments (0)

Please log in or register to comment.
Log in