Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
See all formats and pricing
More options …

A Comprehensive Look at the Possibilities of Edible Insects as Food in Europe – a Review

Jiri Mlcek
  • Corresponding author
  • Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, CZ-76272, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Otakar Rop
  • Department of Gastronomy, College of Business and Hotel Management, Brno, CZ-62500, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie Borkovcova
  • Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, Brno, CZ-61300 Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martina Bednarova
  • Department of Information Technology, Faculty of Agronomy, Mendel University in Brno, Brno, CZ-61300 Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/v10222-012-0099-8


Possibilities of edible insects use in European countries, are now an increasingly debated issue. Insects in Asian, African, Central American and South Central American cultures are mainly nutritional components. This review mainly describes the species of insects that are suitable as food in Europe and other developed countries. This comprehensive work addresses the issue of eating insects, especially considering the nutritionally important factors. Risks are also mentioned, as well as allergies, toxicity, and other aspects of the breeding and use of edible insects. Insects play and will play important roles in the future in various fields of research, exploitation, breeding, etc. This review provides a comprehensive current and future view of insects as a valuable foodstuff.

Keywords: insect; human nutrition; entomophagy; chemical composition; toxicity


  • 1. Adamolekun B., McCandless D.W., Butterworth R.F., Epidemic of seasonal ataxia in Nigeria following ingestion of the African silkworm Anaphe venata: Role of thiamine deficiency? Metab. Brain Dis., 1997, 12, 251-258.CrossrefGoogle Scholar

  • 2. Aguilar-Miranda E.D., Lopez M.G., Escamilla-Santana C., Barba De La Rosa A.P., Characteristics of maize fl our tortilla supplemented with ground Tenebrio molitor larvae. J. Agr. Food Chem., 2002, 50, 192-195.CrossrefGoogle Scholar

  • 3. Akinnawo O., Ketiku A.O., Chemical composition and fatty acid profi le of edible larva of Cirina forda (Westwood). Afr. J. Biomed. Res., 2000, 3, 93-96.Google Scholar

  • 4. Babiker E.E., Hassan A.B., Eltayeb M.M., Solubility and functional properties of boiled and fried Sudanese tree locust fl our as a function of NaCl concentration. J. Food Technol., 2007, 5, 210-214.Google Scholar

  • 5. Backwell L.R., D’errico F., Evidence of termite foraging by Swartkrans early hominids. Proc. Natl. Acad. Sci. USA, 2001, 98, 1358-1363.CrossrefGoogle Scholar

  • 6. Banjo A.D., Lawal O.A., Songonuga E.A., The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol., 2006, 5, 298-301.Google Scholar

  • 7. Barker D., Fitzpatrick M.P., Dierenfeld E.S., Nutrient composition of selected whole invertebrates. Zoo Biol., 1998, 17, 123-134.CrossrefGoogle Scholar

  • 8. Bednarova M., Borkovcova M., Mlcek J., Rop O., Zeman L., Edible insects - species suitable for entomophagy under condition of Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun., 2013, 61, 3, 587-593.CrossrefGoogle Scholar

  • 9. Bednarova M., Borkovcova M., Komprda T., Purine derivate content and amino acid profi le in larval stages of three edible insects. J. Sci. Food Agric., 2014, 94, 71-76.CrossrefGoogle Scholar

  • 10. Bernstein D.I., Gallagher J.S., Bernstein I.L., Mealworm asthma: clinical and immunologic studies. J. Allergy Clin. Immun., 1983, 72, 475-480.CrossrefGoogle Scholar

  • 11. Bleßmann-Gurk B., Hoffmann B., Bayerl C., Allergische Kontakturtikaria bei einem Reptilienhalter. Aktuelle Derm., 2007, 33, 166 (in German).Google Scholar

  • 12. Borkovcova M., Bednarova M., Fiser V., Ocknecht P., Kuchyne hmyzem zpestrena, 2009, 1st ed., Lynx: Brno, Czech Republic. 136 p. ISBN 975-80-86787-37-4.Google Scholar

  • 13. Bouvier G., Quelques questions d’entomologie vétérinaire et lutte contre certains arthropodes en Afrique tropicale. Acta Trop., 1945, 2, 42-59 (in French).Google Scholar

  • 14. Bukkens S.G.F., The nutritional value of edible insects. Ecol. Food Nutr., 1997, 36, 287-319.CrossrefGoogle Scholar

  • 15. Bukkens G.F., Insects in the human diet: Nutritional aspects, 2005, In M.G. Paoletti, ed. Ecological implications of minilivestock, p. 545-577. Enfi eld NH, Science Pub., USAGoogle Scholar

  • 16. Burton O.T., Zaccone P., The potential role of chitin in allergic reactions. Trends Immunol., 2007, 28, 419-422.CrossrefGoogle Scholar

  • 17. Carlson B., Kingston J.D., Docosahexaenoic acid biosynthesis and dietary contingency: Encephalization without aquatic constraint. Am. J. Hum. Biol., 2007, 19, 585-588.CrossrefGoogle Scholar

  • 18. Cerritos R., Grasshoppers in agrosystems: Pest or food? CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2011, 6, 1-9.Google Scholar

  • 19. Chae J., Kurokawa K., So Y., Hwang H.O., Kim M., Park J., Jo Y., Lee Y.S., Lee B.L., Purifi cation and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev. Compar. Immunol., 2012, 36, 540-546.Google Scholar

  • 20. Chen X., Feng Y., Chen Z., Common edible insects and their utilization in China. J. Entomol. Res., 2009, 39, 299-303.Google Scholar

  • 21. Chen X.M., Feng Y., The Edible Insects of China, 1999, 1st ed., Science and Technology Publishing House: Beijing, China.Google Scholar

  • 22. Comby B., Délicieux insectes. Les protéines du futur, 1990, 1st ed., Editions Jouvence: Geneve, Switzerland. p. 105-119.Google Scholar

  • 23. Crawford M., Galli C., Visioli F., Renaud S., Simopoulos A.P., Spector A.A., Role of plant-derived omega-3 fatty acids in human nutrition. Ann. Nutr. Metab., 2000, 44, 263-265.CrossrefGoogle Scholar

  • 24. De Foliart G.R., The Human used of insects as food and feed. Bull. Entomol. Soc. Am., 1989, 35, 22-35.Google Scholar

  • 25. De Foliart G.R., Insect fatty acids: similar to those or poultry and fi sh in their degree of unsaturation but higher in the polyunsaturates. Food Insects. Newsl., 1991, 4, 1-4.Google Scholar

  • 26. De Foliart G.R., Insects as human food. Crop Prot., 1992, 11, 395-399.CrossrefGoogle Scholar

  • 27. De Foliart G.R., Edible insects as minilivestock. Biodivers. Conserv., 1995, 4, 306-321.CrossrefGoogle Scholar

  • 28. De Foliart G.R., Overview of Role of Edible Insects in Preserving Biodiversity, 2005, In M.G. Paoletti, ed. Ecological implications of minilivestock, p. 123-140. Enfi eld NH, Science Pub., USAGoogle Scholar

  • 29. Diener S., Zurbrügg C., Tockner K., Conversion of organic material by black soldier fl y larvae: Establishing optimal feeding rates. Waste Manag. Res., 2009, 27, 603-610.Google Scholar

  • 30. Elias J.A., Homer R.J., Hamid Q., Chun G.L., Chitinases and chitinase-like proteins in TH2 infl ammation and asthma. J. Aller. Clin. Immun., 2005, 116, 497-500.CrossrefGoogle Scholar

  • 31. Falade K.O., Omojola B.S., Effect of processing methods on physical, chemical, rheological, and sensory properties of Okra (Abelmoschus esculentus). Food Bioprocess Tech., 2010, 3, 387-394.CrossrefGoogle Scholar

  • 32. FAO, Assessing the Potential of Insects as Food and Feed in assuring Food Security, 2012, in: Summary Report of Technical Consultation Meeting (eds. P. Vantomme, E. Mertens, A. van Huis, H. Klunder). Rome, Italy .Google Scholar

  • 33. Feng Y., Chen X.M., Ye S.D., Wang S.Y., Chen Y., Wang Z.L., Records of four species edible insects in Homoptera and its nutritive elements analysis. Forest Res., 1999, 12, 515-518.Google Scholar

  • 34. Feng Y., Chen X.M., Wang S.Y., Ye S.D., Chen Y., The nutritive elements analysis of bamboo insect and review on its development and utilization value. Forest Res., 2000a, 13, 188-191.Google Scholar

  • 35. Feng Y., Chen X.M., Wang S.Y., Ye S.D., Chen Y., The common edible insects of Hemiptera and its nutritive value. Forest Res., 2000b, 13, 612-620.Google Scholar

  • 36. Feng Y., Chen X.M., Wang S.Y., Ye S.D., Chen Y., Three edible Odonata species and their nutritive value. Forest Res., 2001a, 14, 421-424.Google Scholar

  • 37. Feng Y., Chen X.M., Wang S.Y., Ye S.D., Wang Z.L., Studies on the nutritive value and food safety of Ericerus pela eggs. Forest Res., 2001b, 14, 322-327.Google Scholar

  • 38. Feng Y., Chen X.M., Ye S.D., Wang S.Y., Chen Y., Wang Z.L., The common edible species of wasps in Yunnan and their value as food. Forest Res., 2001c, 14, 578-581.Google Scholar

  • 39. FDA, Levels of natural or unavoidable defects in Foods that present no health hazards for humans, fi rst ed. Silver Spring, Maryland, 2012.Google Scholar

  • 40. Finke M.D., De Foliart G.R., Benevenga N.J., Use of a fourparameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J. Nutr., 1989, 119, 864-871.Google Scholar

  • 41. Finke M.D., Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol., 2002, 21, 269-285.CrossrefGoogle Scholar

  • 42. Finke M.D., Encyclopedia of Entomology, 2004, 1st ed., Kluwer Academic Press: Dordrecht, The Netherlands.Google Scholar

  • 43. Finke M.D., Estimate of chitin in raw whole insects. Zoo Biol., 2007, 26, 105-115.CrossrefGoogle Scholar

  • 44. Fontaneto D., Tommaseo-Ponzetta M., Galli C., Risé P., Glew R.H., Paoletti M.G., Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr., 2011, 50, 351-367.CrossrefGoogle Scholar

  • 45. Freye H.B., Esch R.E., Litwin C.M., Sorkin L., Anaphylaxis to the ingestion and inhalation of Tenebrio molitor (mealworm) and Zophobas morio (superworm). Aller. Asthma Proc., 1996, 17, 215-219.CrossrefGoogle Scholar

  • 46. Goodman W.G., Chitin: A Magic Bullet? Food Insenct. Newsl., 1989, 3, 6-7.Google Scholar

  • 47. Gullan P.J., Cranston P.S., The Insects: An Outline of Entomology, 2005, 3rd ed., Blackwell Publishing Ltd.: Oxford, UK, cap. The importance, diversity and conservation of isects. 505 p.Google Scholar

  • 48. Hamilton M., Disgust reactions to meat among ethically and health motivated vegetarians. Ecol. Food Nutr., 2006, 45, 125-158.CrossrefGoogle Scholar

  • 49. Harris M., Good to Eat: Riddles of Food and Culture, 1998, 3rd ed., Waveland Press: Long Grove, IL, USA, 289 p.Google Scholar

  • 50. He J.Z., Tong Q., Huang X.H., Zhou Z.H., Nutritive composition analysis of moths of Dendrolimus houi Lajongquiere. Entomol. Knowledg., 1999, 36, 83-86.Google Scholar

  • 51. Heinrich M., Prieto J.M., Diet and healthy ageing 2100: Will we globalise local knowledge systems? Ageing Res. Rev., 2008, 7, SI, 249-274.CrossrefGoogle Scholar

  • 52. Hu C., Resource Insects and Utility, 1996, 1st ed. China Agriculture Press, Beijing, p. 219-228.Google Scholar

  • 53. Kampmeier G.E., Irwin B.E., Encyclopedia of Insects, 2009, 2nd ed., Academic Press Inc: Burlington, MA, USA, cap. Commercialization of insects and their products, p. 220-227..Google Scholar

  • 54. Katayama N., Yamashita M., Wada H., Mitsuhashi J., Space agriculture task force; entomophagy as part of a space diet for habitation on Mars. J. Space Technol. Sci., 2005, 21, 1-10.Google Scholar

  • 55. Katayama N., Ishikawa Y., Takaoki M., Yamashita M., Nakayama S., Kiguchi K., Kok R., Wada H., Mitsuhashi J., Entomophagy: A key to space agriculture. Adv. Space Res., 2008a, 41, 701-705.CrossrefGoogle Scholar

  • 56. Katayama N., Yamashita M., Kishida Y., Liu C., Watanabe I., Wada H., Azolla as a component of the space diet during habitation on Mars. Acta Astronaut., 2008b, 63, 1093-1099.CrossrefGoogle Scholar

  • 57. Kinyuru J.N., Kenji G.M., Njoroge S.M., Ayieko M., Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess Tech., 2010, 3, 778-782.CrossrefGoogle Scholar

  • 58. Kodelja V., Müller C., Tenorio S., Schebesch C., Orfanos C.E., Goerdt S., Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology, 1997, 197, 478-493.CrossrefGoogle Scholar

  • 59. Krause M., Mahan L.M., Food, Nutrition and Diet Therapy, 2003, 11th ed., W. B. Saunders Co.: St. Louis, CA, USA.Google Scholar

  • 60. Linares T., Hernandez D., Bartolome B., Occupational rhinitis and asthma due to crickets. Ann. Allerg. Asthma Immunol., 2008, 100, 566-574.Google Scholar

  • 61. Lu Y., Wang D.R., Han D.B., Zhang Z.S., Zhang C.H., Analysis of the patterns and contents of amino acids and fatty acids from M. annandalei (Silvestri) and M. barneyi Light. Acta Nutr. Sin., 1992, 14, 103-106.Google Scholar

  • 62. Marconi S., Manzi P., Pizzoferrato L., Buscardo E., Cerda H., Hernandez L.D., Paoletti M.G., Nutritional evaluation of terrestrial invertebrates as traditional food in Amazonia. Biotropica, 2002, 34, 273-280. CrossrefGoogle Scholar

  • 63. Mariod A.A., Insect oils: Nutritional and industrial applications. Int. News Fats, Oils Rel. Mat., 2011, 22, 266-268.Google Scholar

  • 64. MacEvilly C., Bugs in the system. Nutr. Bull., 2000, 25, 267-268.Google Scholar

  • 65. Menzel P., D’Aluisio F., Man Eating Bugs: The Art and Science of Eating Insects, 1998, 1st ed., Ten Speed Press: Berkeley, CA, USA, 192 p.Google Scholar

  • 66. Meyer-Rochow V.B., Food taboos: Their origins and purposes. J. Ethnobiol. Ethnomed., 2009, 5, 1-10.Google Scholar

  • 67. Mitsuhashi J., Edible Insects of the World, 1984, 1st ed. Kokin Shoin, Tokyo, Japan, 270 p.Google Scholar

  • 68. Mitsuhashi J., Insects as traditional foods in Japan. Ecol. Food Nutr., 1997, 36, 187-199.CrossrefGoogle Scholar

  • 69. Mitsuhashi J., The future use of insects as human food. Proceedings of the forest insects as food: humans bite back, Chiang Mai, Thailand, 19-21 February 2010, Durst, P.B., Johnson D.V., Leslie R.N., Shono K., Eds., RAP Publication: Bangkok, Thailand, 2010, pp.115-122.Google Scholar

  • 70. Morris B., Insects and Human Life, 2004, 1st ed., Oxford International Publishers Ltd.: Oxford, UK, 317 p.Google Scholar

  • 71. Muzzarelli A., Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci., 1997, 53, 131-140.CrossrefGoogle Scholar

  • 72. Myers H.M., Tomberlin J.K., Lambert B.D., Kattes D., Development of black soldier fl y (Diptera: Stratiomyidae) larvae fed dairy manure. Evniron. Entomol., 2008, 37, 11-15.Google Scholar

  • 73. Mziray R., Imungi J., Karuri E., Changes in ascorbic acid, betacarotene, and sensory properties in sun-dried and stored Amaranthus hybridus vegetables. Ecol. Food Nutr., 2000, 39, 459-469.CrossrefGoogle Scholar

  • 74. Naughton J.M., O’Dea K., Sinclair A.J., Animal foods in traditional Australian Aboriginal diets: polyunsaturated and low in fat. Lipids, 1986, 21, 684-690.CrossrefGoogle Scholar

  • 75. Nishimune T., Watanabe Y., Okazaki H., Akai H., Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J. Nutr., 2000, 130, 1625-1628.Google Scholar

  • 76. Nonaka K., Feasting on insects. J. Entomol. Res., 2009, 39, 304-312.Google Scholar

  • 77. Oliveira J.F.S., de Carvalho J.P., de Sousa R.F.X.B., Simao M.M., The nutritional value of four species of insects consumed in Angola. Ecol. Food Nutr., 1976, 5, 91-97.CrossrefGoogle Scholar

  • 78. Omotoso O.T., Nutritional quality, functional properties and antinutrients compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J. Zhejiang Univ.-Sc. B, 2006, 7, 51-55.Google Scholar

  • 79. Oonincx D.G.A.B., Dierenfeld E.S., An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol., 2012, 31, 40-54.CrossrefGoogle Scholar

  • 80. Opstvedt J., Nygard E., Samuelsen T.A., Venturini G., Luzzana U., Mundheim H., Effect on protein digestibility of different processing conditions in the production of fi sh meal and fi sh feed. J. Sci. Food Agr., 2003, 83, 775-782.CrossrefGoogle Scholar

  • 81. Ozimek L., Sauer W.C., Kozikowski V., Ryan J.K., Jorgensen H., Jelen P., Nutritive value of protein extracted from honey bees. J. Food Sci., 1985, 50, 1327-1329.CrossrefGoogle Scholar

  • 82. Özogul Y., Özogul F., Alagoz S., Fatty acid profi les and fat contents of commercially important seawater and freshwater fi sh species of Turkey: A comparative study. Food Chem., 2007, 103, 217-223.CrossrefGoogle Scholar

  • 83. Paoletti M.G., Dreon A.L., Minilivestock Environment, Sustainability, and Local Knowledge Disappearance, 2005, In M.G. Paoletti, ed. Ecological implications of minilivestock, Enfi eld NH, Science Pub., USA, 648 p.Google Scholar

  • 84. Paoletti M.G., Dufour D.L., Edible Invertebrates among Amazonian Indians: A Critical Review of Disappearing Knowledge, 2005, In M.G. Paoletti, ed. Ecological implications of minilivestock, Enfi eld NH, Science Pub., USA, 648 p.Google Scholar

  • 85. Park S.K., Kim H.I., Yang Y.I., Roles of vascular endothelial growth factor, Angiopoietin 1, and Angiopoietin 2 in nasal polyp. Laryngoscope, 2009, 119, 409-421.Google Scholar

  • 86. Pennino M., Dierenfeld E.S., Behler J.L., Retinol, alpha-tocopherol and proximate nutrient composition of invertebrates used as feed. Int. Zoo Yearbk., 1991, 30, 143-149.Google Scholar

  • 87. Pimentel D., Energy and land constraints in food production. Science, 1980, 190, 754-761.Google Scholar

  • 88. Pimentel D., Pimentel M., Energy use in food processing for nutrition and development. Food Nutr. Bull., 1983, 7, 36-45.Google Scholar

  • 89. Pimentel D., Livestock production and energy use. Enc. Energy 2004, 3, 671-676.Google Scholar

  • 90. Premalatha M., Abbasi T., Abbasi S.A., Energy-effi cient food production to reduce global warming and ecodegradation: The use of edible insects. Renew. Sust. Energ. Rev., 2011, 15, 4357-4360.CrossrefGoogle Scholar

  • 91. Raksakantong P., Meeso N., Kubola J., Siriamornpun S., Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res. Int., 2010, 43, 350-355.CrossrefGoogle Scholar

  • 92. Ramos-Elorduy J., Insect Consumption as a Mean of National Identity, 1996, 1st ed.; Deep Publications: New Delhi, India. p. 9-12.Google Scholar

  • 93. Ramos-Elorduy J., Moreno J.M.P., Prado E.E., Perez M.A., Otero J.L., De Guevara O.L., Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal., 1997, 10, 142-157.CrossrefGoogle Scholar

  • 94. Ramos-Elorduy J., Insects as intermediary biotransformers for obtaining proteins, 1999, in: Homo sapiens: An Endangered Species: Towards a Global Strategy for Survival (eds. F. Dickinson- Bannack, E. Garcia-Santaella). CINVESTAV-IPN, Merida.Google Scholar

  • 95. Ramos-Elorduy J., González E.A., Hernández A.R., Pino J.M., Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol., 2002, 95, 214-220.CrossrefGoogle Scholar

  • 96. Ramos-Elorduy J., Insects: A Hopeful Food, 2005, In M.G. Paoletti, ed. Ecological implications of minilivestock, Enfi eld NH, Science Pub., USA, 648 p.Google Scholar

  • 97. Ramos-Elorduy J., Threatened edible insects in Hidalgo, Mexico and some measures to preserve them. J. Ethnobiol. Ethnomed., 2006, 2, 51.Google Scholar

  • 98. Ramos-Elorduy J., Energy supplied by edible insects from Mexico and their nutritional and ecological importance. Ecol. Food Nutr., 2008, 47, 280-297.CrossrefGoogle Scholar

  • 99. Ramos-Elorduy J., Anthropo-entomophagy: Cultures, evolution and sustainability. J. Entomol. Res., 2009, 39, 271-288.Google Scholar

  • 100. Ramos-Elorduy J., Moreno J.M.P., Vázquez A.I., Landero I., Oliva-Rivera H., Camacho V.H.M., Edible Lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed., 2011, 7, 1-22.Google Scholar

  • 101. Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M., Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature, 2007, 447, 92-96.CrossrefGoogle Scholar

  • 102. Rich B.R., A feasibility study into the commercialisation of witchetty grubs. A Report for Rural Research and Development Corporation, 2006, 1st ed., RIRDC Publication: Kingston, Australia, 58 p.Google Scholar

  • 103. Riddervold M.H., Tittiger C., Blomquist G.J., Borgeson C.E., Biochemical and molecular characterizaton of house cricket (Acheta domesticus, Orthoptera: Gryllidae) 9 desaturase. Insect Biochem. Molec. Biol., 2002, 32, 1731-1740.CrossrefGoogle Scholar

  • 104. Rop O., Mlcek J., Jurikova T., Beta glucans in higher fungi and their health effect. Nutr. Rev., 2009, 67, 624-631.CrossrefGoogle Scholar

  • 105. Schaefer C.H., The relationship of the fatty acid composition of Heliothis zea larvae to that of its diet. J. Insect Physiol., 1968, 14, 171-178.CrossrefGoogle Scholar

  • 106. Schroeckenstein D.C., Meier-Davis S., Bush R.K., Occupational sensitivity to Tenebrio molitor Linnaeus (yellow mealworm). J. Allergy Clin. Immun., 1990, 86, 182-188.CrossrefGoogle Scholar

  • 107. Skinner M., Jones K.E., Dunn B.P., Undetectability of vitamin A in bee brood. Apidologie, 1995, 26, 407-414.CrossrefGoogle Scholar

  • 108. Sponheimer M., Lee-Thorp J.A., Oxygen isotopes in enamel carbonate and their ecological signifi cance. J. Archaeol. Sci., 1999, 26, 723-728.CrossrefGoogle Scholar

  • 109. Sponheimer M., De Ruiter D., Lee-Thorp J., Späth A., Sr/ Ca and early hominin diets revisited: New data from modern and fossil tooth enamel. J. Hum. Evol., 2005, 48, 147-156.CrossrefGoogle Scholar

  • 110. St-Hilaire S., Cranfi ll K., Mcguire M.A., Mosley E.E., Tomberlin J.K., Newton L., Sealey W., Sheppard C., Irving S., Fish offal recycling by the black soldier fl y produces a foodstuff high in omega-3 fatty acids. J. World Aquacult. Soc., 2007, 38, 309-313.Google Scholar

  • 111. Stanley D.W., Protein Reactions During Extrusion Processing in Extrusion Cooking. Extrusion Cooking, 1989, 1st ed., American Association of Cereal Chemists: St. Paul, Minn, USA.Google Scholar

  • 112. Stanley-Samuelson D.W., Jurenka R.A., Cripps C., Blomquist J.G., De Renobales M., Fatty acids in insects: Composition, metabolism, and biological signifi cance. Arch. Insects Biochem., 1988, 9, 1-33.CrossrefGoogle Scholar

  • 113. Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales M., deHaan C., Livestock’s Long Shadow, Environmental Issues and Options, 2006, 1st ed., FAO: Rome, Italy, cap. Livestock as a major player in global environmental issues, 24 p.Google Scholar

  • 114. Sun L., Feng Y., He Z., Ma T., Zhang X., Studies on alkaline solution extraction of polysaccharide from silkworm pupa and its immunomodulating activities. Forest Res., 2007, 20, 782-786.Google Scholar

  • 115. Sun S.S.M., Application of agricultural biotechnology to improve food nutrition and healthcare products. Asia Pac. J. Clin. Nutr., 2008, 17, 87-90.Google Scholar

  • 116. Sutherland E.R., Lehman E.B., Teodorescu M., Wechsler M.E., Body mass index and phenotype in subjects with mild-to-moderate persistent asthma. J. Allergy Clin. Immunol., 2009, 123, 1328-1334.CrossrefGoogle Scholar

  • 117. Sutton M.Q., Archaeological aspects of insect use. J. Archaeol. Method. Th., 1995, 2, 253-298.Google Scholar

  • 118. Taylor R.L., Carter B.J., Entertaining with Insects, or: The Original Guide to Insect Cookery, 1995, 2nd ed., Salutek Publishing: Yorba Linda, CA, USA.Google Scholar

  • 119. Van Huis A., Insects as food in sub-Saharan Africa. Insect Sci. Appl., 2003, 23, 163-185.Google Scholar

  • 120. Wang D., Bai Y., Li J., Zhang Ch., Nutritional value of the fi eld cricket (Gryllus testaceus Walker). Entomologia Sin., 2004, 11, 275-283.Google Scholar

  • 121. WHO/FAO/UNU., Protein and amino acid requirements in human nutrition. Joint FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition, 2002, 1st ed., WHO Press: Geneva, Switzerland.Google Scholar

  • 122. Xia Z., Wu S., Pan S., Kim J.M., Nutritional evaluation of protein from Clanis bilineata (Lepidoptera), an edible insect. J. Sci. Food Agric., 2012, 92, 1479-1482.CrossrefGoogle Scholar

  • 123. Yang G.H., Utility of Chinese Resource Insects and its Industrialization, 1998, 1st ed., China Agriculture Science Press: Beijing, China, p. 5-54.Google Scholar

  • 124. Yang L., Siriamornpun S., Li D., Polyunsaturated fatty acid content of edible insects in Thailand. J. Food Lipids, 2006, 13, 277-285.CrossrefGoogle Scholar

  • 125. Yen A.L., Edible insects: Traditional knowledge or western phobia? J. Entomol. Res., 2009, 39, 289-298.Google Scholar

  • 126. Yen A.L., Edible insects and other invertebrates in Australia: future prospects. Proceedings of the Forest Insects as Food: Humans Bite Back, Chiang Mai, Thailand, 19-21 February 2010, Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds., RAP Publication: Bangkok, Thailand, 2010, pp. 65-84.Google Scholar

  • 127. Zhou X., Horne I., Damcevski K., Haritos V., Green A., Singh S., Isolation and functional characterization of two independently- evolved fatty acid 12-desaturase genes from insects. Insect Mol. Biol., 2008, 17, 667-676. Google Scholar

About the article

Received: 2013-05-07

Revised: 2013-08-13

Accepted: 2013-09-16

Published Online: 2014-08-15

Published in Print: 2014-09-01

Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 64, Issue 3, Pages 147–157, ISSN (Online) 2083-6007, DOI: https://doi.org/10.2478/v10222-012-0099-8.

Export Citation

© by Jiri Mlcek. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dele Raheem, Conrado Carrascosa, Oluwatoyin Bolanle Oluwole, Maaike Nieuwland, Ariana Saraiva, Rafael Millán, and António Raposo
Critical Reviews in Food Science and Nutrition, 2018, Page 1
E. Kamau, C. Mutungi, J. Kinyuru, S. Imathiu, C. Tanga, H. Affognon, S. Ekesi, D. Nakimbugwe, and K.K.M. Fiaboe
Food Research International, 2018
Yannik Schlup and Thomas Brunner
Food Quality and Preference, 2017
E. Wynants, S. Crauwels, B. Lievens, S. Luca, J. Claes, A. Borremans, L. Bruyninckx, and L. Van Campenhout
Innovative Food Science & Emerging Technologies, 2017, Volume 42, Page 8
Davide Menozzi, Giovanni Sogari, Mario Veneziani, Erica Simoni, and Cristina Mora
Food Quality and Preference, 2017, Volume 59, Page 27
Soon-Kyung Kim, Connie M. Weaver, and Mi-Kyeong Choi
CyTA - Journal of Food, 2016, Page 1
Ashleigh Elizabeth Ali
Perspectives on Global Development and Technology, 2016, Volume 15, Number 4, Page 391
Piotr Minkiewicz, Małgorzata Darewicz, Anna Iwaniak, Jolanta Sokołowska, Piotr Starowicz, Justyna Bucholska, and Monika Hrynkiewicz
International Journal of Molecular Sciences, 2015, Volume 16, Number 9, Page 20748

Comments (0)

Please log in or register to comment.
Log in