Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Isolation and Characterization of Exopolysaccharide-Producing Lactobacillus plantarum SKT109 from Tibet Kefir

Ji Wang
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No. 11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R. China
  • School of Biological and Agricultural Engineering, Jilin University, 130022 Changchun, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiao Zhao
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No. 11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zheng Tian
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No. 11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Congcong He
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No. 11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yawei Yang
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No. 11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhennai Yang
  • Corresponding author
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No. 11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R. China
  • School of Biological and Agricultural Engineering, Jilin University, 130022 Changchun, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-26 | DOI: https://doi.org/10.1515/pjfns-2015-0023

Abstract

Lactobacillus plantarum SKT109 was isolated and identified from Tibet Kefir, and the exopolysaccharride (EPS)-producing properties of the strain were evaluated. Growth of strain SKT109 in a semi-defined medium at 37°C increased the viscosity of the medium, corresponding to production of an EPS (58.66 mg/L). The EPS was isolated and purified, and it was shown to consist of fructose and glucose in an approximate molar ratio of 3:1, with an average molecular weight of 2.1×106 Da. The aqueous solution of EPS at 1% (w/v) exhibited shear thinning behavior. Microstructural studies of the EPS demonstrated a highly compact structure with a smooth surface, facilitating formation of film by the polymer; the EPS was composed of many different sizes of spherical lumps with tendency to form molecular aggregates. Studies on the milk fermentation characteristics of L. plantarum SKT109 showed that the strain survived well in fermented milk with counts about 8.0 log cfu/g during 21 days of storage at 4°C. The use of the EPS-producing strain improved the rheology of the fermented milk without causing post-acidification during storage. Particularly, L. plantarum SKT109 improved the fermented milk flavor by increasing the concentration of characteristic flavor compounds and eliminating those with dis gusting flavors. The results of the present study indicated that EPS-producing L. plantarum SKT109 could serve as a promising candidate for further exploitation in fermented foods.

Keywords: exopolysaccharide; Lactobacillus plantarum; fermented milk; characterization

References

  • 1. Ahmed Z., Wang Y., Anjum N., Ahmad A., Khan S.T., Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir - Part II. Food Hydrocoll., 2013, 30, 343-350.CrossrefGoogle Scholar

  • 2. Ayala-Hernández I., Hassan A.N., Goff H.D., Corredig M., Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris. Food Hydrocoll., 2009, 23, 1299-1304.CrossrefGoogle Scholar

  • 3. Behare P.V., Singh R., Tomar S.K., Nagpal R., Kumar M., Mohania D., Effect of exopolysaccharide-producing strains of Streptococcus thermophiles on technological attributes of fat-free lassi. J. Dairy Sci., 2010, 93, 2874-2879.Google Scholar

  • 4. Brinques G.B., Ayub M.A.Z., Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng., 2011, 103, 123-128.Google Scholar

  • 5. Bujalance C., Jimenez-Valera M., Moreno E., Ruiz-Bravo A., A selective differential medium for Lactobacillus plantarum. J. Microbiol. Meth., 2006, 66, 572-575.CrossrefGoogle Scholar

  • 6. Casarotti S.N., Monteiro D.A., Moretti M.M.S., Penna A.L.B., Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Res. Int., 2014, 59, 67-75.Google Scholar

  • 7. Degeest B., Mozzi F., De Vuyst L., Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int. J. Food Microbiol., 2002, 79, 161-174.CrossrefGoogle Scholar

  • 8. de los Reyes-Gavilán C.G., Suárez A., Fernández-García M., Margolles A., Gueimonde M., Ruas-Madiedo P., Adhesion of bile-adapted Bifi dobacterium strains to the HT29-MTX cell line is modifi ed after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Res. Microbiol., 2011, 162, 514-519.CrossrefGoogle Scholar

  • 9. Doleyres Y., Schaub L., Lacroix C., Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on fermented milk properties. J. Dairy Sci., 2005, 88, 4146-4156.Google Scholar

  • 10. Faber E.J., Kamerling J.P., Johannes F.G., Vliegenthart J.F.G., Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291. Carbohydr. Res., 2001, 331, 183-194.Google Scholar

  • 11. Folkenberg D.M., Dejmek P., Skriver A., Guldager H.S., Ipsen R., Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int. Dairy J., 2006, 16, 111-118.CrossrefGoogle Scholar

  • 12. Gentès M.C., St-Gelais D., Turgeon S.L., Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Sci. Technol., 2011, 91, 645-661.CrossrefGoogle Scholar

  • 13. Georgieva R., Iliev I., Haertlé T., Chobert J., Ivanova I., Danova S., Technological properties of candidate probiotic Lactobacillus plantarum strains. Int. Dairy J., 2009, 19, 696-702.CrossrefGoogle Scholar

  • 14. Górska S., Jachymek W., Rybka J., Strus M., Heczko P.B., Gamian A., Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsonii 142. Carbohydr. Res., 2010, 345, 108-114.Google Scholar

  • 15. Gruter M., Leefl ang B.R., Kuiper J., Kamerling J.P., Vliegenthart J.F.G., Structural characterisation of the exopolysaccharide produced by Lactobacillus delbrückii subspecies bulgaricus rr grown in skimmed milk. Carbohydr. Res., 1993, 239, 209-226.Google Scholar

  • 16. Güler-Akin M.B., Akin M.S., Korkmaz A., Infl uence of different exopolysaccharide-producing strains on the physicochemical, sensory and syneresis characteristics of reduced-fat stirred yoghurt. Int. J. Dairy Technol., 2009, 62, 422- 430. CrossrefGoogle Scholar

  • 17. Harding L., Marshall V., Hernandez Y., Gu Y., Maqsood M., McLay N., Laws A., Structural characterisation of a highly branched exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074. Carbohydr. Res., 2005, 340, 1107-1111.Google Scholar

  • 18. Hassan A.N., Ipsen R., Janzen T., Qvist K.B., Microstructure and rheology of fermented milk made with cultures differing only in their ability to produce exopolysaccharides. J. Dairy Sci., 2003, 86, 1632-1638.CrossrefGoogle Scholar

  • 19. Kailasapathy K., Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci. Technol., 2006, 39, 1221-1227.CrossrefGoogle Scholar

  • 20. Kimmel S.A., Roberts R.F., Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int. J. Food Microbiol., 1998, 40, 87-92.CrossrefGoogle Scholar

  • 21. Lamothe G., Jolly L., Mollet B., Stingele F., G enetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch. Microbiol., 2002, 178, 218-228.Google Scholar

  • 22. Li C., Li W., Chen X., Feng M., Rui X., Jiang M., Dong M., Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT-Food Sci. Technol., 2014c, 57, 477-485.Google Scholar

  • 23. Li H., Liu L., Zhang S., Uluko H., Cui W., Lv J., P otential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control, 2013, 34, 675-680.CrossrefGoogle Scholar

  • 24. Li S., Zhao Y., Zhang L., Zhang X., Huang L., Li D., Niu C., Yang Z., Wang Q., Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem., 2012b, 135, 1914-1919.Google Scholar

  • 25. Li W., Mutuvulla M., Chen X., Jiang M., Dong M., Isolation and identification of high viscosity-producing lactic acid bacteria from a traditional fermented milk in Xinjiang and its role in fermentation process. Eur. Food Res. Technol., 2012a, 235, 497-505.Google Scholar

  • 26. Li W., Ji J., Rui X., Yu J., Tang W., Chen X., Jiang M., Dong M., Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT-Food Sci. Technol., 2014b, 59, 732-739.Google Scholar

  • 27. Li W., Ji J., Tang W., Rui X., Chen X., Jiang M., Dong M., C haracterization of an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB2-1. Carbohydr. Polym., 2014a, 105, 334-340.CrossrefGoogle Scholar

  • 28. Lynch K.M., McSweeney P.L.H., Arendt E.K., Uniacke-Lowe T., Galle S., Coffey A., Isolation and characterisation of exopolysaccharide- producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. Int. Dairy J., 2014, 34, 125-134.CrossrefGoogle Scholar

  • 29. Maragkoudakis P.A., Miaris C., Rojez P., Manalis N., Magkanari F., Kalantzopoulos G., Tsakalidou E., Production of traditional Greek yoghurt using Lactobacillus strains with probiotic potential as starter adjuncts. Int. Dairy J., 2006, 16, 52-60.CrossrefGoogle Scholar

  • 30. Mende S., Dong T., Rathemacher A., Rohm H., Jaros D., Physicochemical characterisation of the exopolysaccharides of Streptococcus thermophilus ST-143. Int. J. Food Sci. Tech., 2014, 49, 1254-1263. Google Scholar

  • 31. Mirlohi M., Soleimanian-Zad S., Dokhani S., Sheikh-Zeinodin M., Microbial and physiochemical changes in yoghurts containing different Lactobacillus delbrueckii subsp. bulgaricus strains in association with Lactobacillus plantarum as an adjunct culture. Int. J. Dairy Technol., 2014, 67, 246-254.Google Scholar

  • 32. Papagianni M., Psomas S.K., Batsilas L., Paras S.V., Kyriakidis D.A., Liakopoulou-Kyriakides M., Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem., 2001, 37, 73-80.Google Scholar

  • 33. Prasanna P.H.P., Bell A., Grandison A.S., Charalampopoulos D., Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifi dobacterium infantis NCIMB 702205. Carbohydr. Polym., 2012, 90, 533-540.Google Scholar

  • 34. Prasanna P.H.P., Grandison A.S., Charalampopoulos D., Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifi - dobacterium strains. Food Res. Int., 2013, 51, 15-22.CrossrefGoogle Scholar

  • 35. Purohit D.H., Hassan A.N., Bhatia E., Zhang X., Dwivedi C., R heological, sensorial, and chemopreventive properties of milk fermented with exopolysaccharide-producing lactic cultures. J. Dairy Sci., 2009, 92, 847-856.CrossrefGoogle Scholar

  • 36. Q in Q., Xia B., Xiong Y., Zhang S., Luo Y., Hao Y. , Structural characterization of the exopolysaccharide produced by Streptococcus thermophiles 05-34 and its in situ application in yogurt. J. Food Sci., 2011, 76, 1226-1230.Google Scholar

  • 37. Ramchandran L., Shah N.P., Effect of exopolysaccharides on the proteolytic and angiotensin-I converting enzyme-inhibitory activities and textural and rheological properties of low-fat fermented milk during refrigerated storage. J. Dairy Sci., 2009, 92, 895-906.CrossrefGoogle Scholar

  • 38. Salazar N., Prieto A., Leal J.A., Mayo B., Bada-Gancedo J.C., de los Reyes-Gavilán C.G., Ruas-Madiedo P., Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J. Dairy Sci., 2009, 92, 4158-4168.CrossrefGoogle Scholar

  • 39. Shang N., Xu R., Li P., Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydr. Polym., 2013, 91, 128-134.Google Scholar

  • 40. Shao L., Wu Z., Zhang H., Chen W., Ai L., Guo B., Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr. Polym., 2014, 107, 51-56.Google Scholar

  • 41. Smitinont T., Tansakul C., Tanasupawat S., Keeratipibul S., Navarini L., Bosco M., Cescutti P., Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol., 1999, 51, 105-111.CrossrefGoogle Scholar

  • 42. Tallon R., Bressollier P., Urdaci M.C., Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Re s. Microbiol., 2003, 154, 705-712. Google Scholar

  • 43. Vaningelgem F., Zamfir M., Mozzi F., Adriany T., Vancanneyt M., Swings J., De Vuyst L., Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Ap pl. Environ. Microb., 2004a, 70, 900-912.Google Scholar

  • 44. Vaningelgem F., Meulen R., Zamfir M., Adriany T., Laws A.P., De Vuyst L., Streptococcus thermophilus ST 111 produces a stable high-molecular-mass exopolysaccharide in milk-based medium. Int. Dairy J., 2004b, 14, 857-864.CrossrefGoogle Scholar

  • 45. Wang J., Li Q., Li M., Chen T., Zhou Y., Yue Z., Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour. Technol., 2014a, 163, 374-376.Google Scholar

  • 46. Wang K., Li W., Rui X., Chen X., Jiang M., Dong M., Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int. J. Biol. Macromol., 2014b, 63, 133-139.Google Scholar

  • 47. Wang Y., Li C., Liu P., Ahmed Z., Xiao P., Bai X., Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr. Polym., 2010, 82, 895-903.Google Scholar

  • 48. Yang Z., Li S., Zhang X., Zeng X., Li D., Zhao Y., Zhang J., Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products. J. Biosci. Bioeng., 2010, 110, 53-57.Google Scholar

  • 49. Ye S., Zhang M., Yang H., Wang H., Xiao S., Liu Y., Wang J., Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydr. Polym., 2014, 101, 50-56.Google Scholar

  • 50. Yu Z., Zhang X., Li S., Li C., Li D., Yang Z., Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J. Microbiol. Biotechnol., 2013, 29, 489-498.CrossrefGoogle Scholar

  • 51. Zhang J., Zhang X., Zhang L., Zhao Y., Niu C., Yang Z., Li S., Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia “Hurood” cheese. J. Microbiol. Biotechnol., 2014, 24, 225-235.CrossrefGoogle Scholar

  • 52. Zhang L., Liu C., Li D., Zhao Y., Zhang X., Zeng X., Yang Z., Li S., Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol., 2013b, 54, 270-275.Google Scholar

  • 53. Zhang L., Zhang X., Liu C., Li C., Li S., Li T., Li D., Zhao Y., Yang Z., Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J. Microbiol. Biotechnol., 2013a, 29, 127-135.CrossrefGoogle Scholar

  • 54. Zhou F., Wu Z., Chen C., Han J., Ai L., Guo B., Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocoll., 2014, 36, 362-368. CrossrefGoogle Scholar

About the article

Received: 2014-09-29

Revised: 2015-02-09

Accepted: 2015-02-19

Published Online: 2015-11-26

Published in Print: 2015-12-01


Citation Information: Polish Journal of Food and Nutrition Sciences, Volume 65, Issue 4, Pages 269–280, ISSN (Online) 2083-6007, DOI: https://doi.org/10.1515/pjfns-2015-0023.

Export Citation

© by Zhennai Yang. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yunyun Jiang and Zhennai Yang
Journal of Functional Foods, 2018, Volume 47, Page 229

Comments (0)

Please log in or register to comment.
Log in