Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.397
Source Normalized Impact per Paper (SNIP) 2016: 0.951

Open Access
Online
ISSN
2083-6007
See all formats and pricing
More options …

Potential Health Implications of the Consumption of Thermally-Oxidized Cooking Oils – a Review

Ayodeji Osmund Falade
  • Corresponding author
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700 Eastern Cape, South Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ganiyu Oboh
  • Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P. M.B. 704, Akure, 340252, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anthony Ifeanyi Okoh
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700 Eastern Cape, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-30 | DOI: https://doi.org/10.1515/pjfns-2016-0028

Abstract

Cooking oils are an integral part of a human diet as they are used in almost all types of culinary practices. They serve as sources of lipids with a significant nutritive value and health benefits which can be attributed to their fatty acid compositions and biological antioxidants. However, cooking oils are usually subjected to thermal oxidation which occurs when fresh cooking oil is heated at high temperatures during various food preparations. Repeated use of cooking oils in the commercial food industry is also common to maximize profit. Thermal oxidation of edible oils had since attracted great attention of nutritionist and researchers given the deteriorative effect such as generation of very cytotoxic compounds, loss of carotenoid, phenolics and vitamins thus reducing the overall antioxidant properties of the oils. Furthermore, several in vivo studies had suggested that consumption of thermally-oxidized cooking oils might not be healthy as it might negatively influence the lipid profile (increased low density lipoprotein (LDL), decreased high density lipoprotein (HDL) and elevated cholesterol level), haematological system (alteration in concentration of heamoglobin (Hb), packed cell volume (PCV), white blood cell (WBC) count, neutrophil and lymphocyte counts), kidney function, and induce lipid peroxidation and oxidative stress which have been associated with the pathogenesis of various degenerative diseases. Therefore, thermal oxidation seems not to provide any health benefit, as it deteriorates cooking oils and the consumption of the oils may predispose consumers to various disease conditions that may ensue from free radical generation, thereby having deleterious effect on human health.

Keywords: thermal oxidation; cooking oils; antioxidant properties; health concerns

REFERENCES

  • 1. Achouh P.E., Simonet S., Fabiani J.N., Verbeuren T.J., Carbon monoxide induces relaxation of human internal thoracic and radial arterial grafts. Interact. Cardiovasc. Thorac. Surg., 2008, 7, 959–962.CrossrefGoogle Scholar

  • 2. Adam S.K., Das S., Soelaiman I.N., Umar N.A., Jaarin K., Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats. Tohoku J. Exp. Med., 2008b, 215, 219–226.Google Scholar

  • 3. Adam S.K., Soelaiman I.N., Umar N.A., Mokhtar N., Mohamed N., Jaarin K., Effects of repeatedly heated palm oil on serum lipid profile, lipid peroxidation and homocysteine levels in a post-menopausal rat model. McGill J. Med., 2008a, 11, 145–151.Google Scholar

  • 4. Adam S.K., Sulaiman N.A., Mat Top A.G., Jaarin K., Heating reduces vitamin E content in palm and soy oils. Malays. J. Biochem. Mol. Biol., 2007, 15 (2), 76–79.Google Scholar

  • 5. Aladedunye F.A., Przybylski R., Degradation and nutritional quality changes of oil during frying. J. Am. Oil Chem. Soc., 2009, 86, 149–156.CrossrefGoogle Scholar

  • 6. Alarcon de la Lastra C., Barranco M.D., Motilova V., Herrerias J.M., Mediterranean diet and health: biological importance of olive oil. Curr. Pharm. Design., 2001, 7, 933–950.Google Scholar

  • 7. Andrikopoulos N.K., Kalogeropoulos N., Falirea A., Barbagianni M.N., Performance of virgin olive oil and vegetable shortening during domestic deep-frying and pan-frying of potatoes. Int. J. Food Sci. Tech., 2002, 37 (2), 177–190.CrossrefGoogle Scholar

  • 8. Ani E.J., Nna V.U., Obi C.E., Udobong N.J., Comparative effects of thermoxidized palm oil and groundnut oil diets on some haematological parameters in albino wistar rats. Aust. J. Basic Appl. Sci., 2015a, 9 (5), 181–184.Google Scholar

  • 9. Ani E.J., Nna V.U., Owu D.U., Osim E.E., Effect of chronic consumption of two forms of palm oil diet on serum electrolytes, creatinine and urea in rabbits. J. Appl. Pharm. Sci., 2015b, 5 (6), 115–119.CrossrefGoogle Scholar

  • 10. Attya M., Benabdelkamel H., Perri E., Russo A., Sindona G., Effects of conventional heating on the stability of major olive oil phenolic compounds by tandem mass spectrometry and isotope dilution assay. Molecules, 2010, 15, 8734–8746.CrossrefGoogle Scholar

  • 11. Blekas G., Boskou D., Phytosterols and stability of frying oils. 1999, in: Frying of Food. (eds. D. Boskou, I. Elmadfa). Technomic Publishing Co. Inc., Lancaster, pp. 205–222.Google Scholar

  • 12. Boskou D., Culinary applications. 2006, in: Olive Oil Chemistry and Technology (ed. D. Boskou). AOCS Press, Champaign, Illinois, pp. 243–248.Google Scholar

  • 13. Brenes M., Garciäa A., Dobarganes M.C., Velasco J., Romero C.N., Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J Agric. Food Chem., 2002, 50, 5962–5967.CrossrefGoogle Scholar

  • 14. Carrasco-Pancorbo A., Cerretani L., Bendini A., Segura-Carretero A., Lercker G., Fernaändez-Gutieärrez A., Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils. J. Agric. Food Chem., 2007, 55, 4771–4780.CrossrefGoogle Scholar

  • 15. Chlopicki S., Olszanecki K., Marcinkiewicz E., Lomnicka M., Motterlini R., Carbon monoxide released by CORM-3 inhibits human platelets by a mechanism independent of soluble guanylate cyclase. Cardiovasc. Res., 2006, 71, 393–401.CrossrefGoogle Scholar

  • 16. Choe E., Min D.B., Chemistry of deep-fat frying oils. J. Food Sci., 2007, 72 (5), R77–R86.Google Scholar

  • 17. Chong Y.H., Ng T.K.W., Effects of palm oil on cardiovascular risk. Med. J. Malaysia, 1991, 46, 1.Google Scholar

  • 18. Cicerale S., Lucas, L.J., Keast R.S.J., Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol., 2012, 23, 129–135.CrossrefGoogle Scholar

  • 19. Dittrich M., Jahreis G., Bothor K. et al., Benefits of foods supplemented with vegetable oils rich in alpha-linolenic, stearidonic or docosahexaenoic acid in hypertriglyceridemic subjects: a double-blind, randomized, controlled trial. Eur. J. Nutr., 2015, 54, 881–893.CrossrefGoogle Scholar

  • 20. Dobarganes C., Márquez-Ruiz G., Possible adverse effects of frying with vegetable oils. British J. Nutr., 2015, 113, S49-S57.Google Scholar

  • 21. Falade A.O., Oboh G., Thermal oxidation induces lipid peroxidation and changes in the physico-chemical properties and β-carotene content of arachis oil. Int. J. Food Sci., 2015, dx.doi.org/10.1155/2015/806524.CrossrefGoogle Scholar

  • 22. Falade A.O., Oboh G., Ademiluyi A.O., Odubanjo O.V., Consumption of thermally oxidized palm oil diets alters biochemical indices rats. Beni Suef University J. Basic Appl. Sci., 2015, 4 (2), 150–156.Google Scholar

  • 23. Farmer E.E., Davoine C., Reactive electrophile species. Curr. Opin. Plant Biol., 2007, 10 (4), 380–6.CrossrefGoogle Scholar

  • 24. Fullana A., Carbonell-Barrachina A.A., Sidhu S., Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. J. Agric. Food Chem., 2004, 52, 5207–5214.CrossrefGoogle Scholar

  • 25. Giacco F., Brownlee M., Oxidative stress and diabetic complications. Circ. Res., 2010, 107 (9), 1058–1070.CrossrefGoogle Scholar

  • 26. Guallar-Castillon P., Rodríguez-Artalejo F., Lopez-Garcia E. et al., Intake of fried foods is associated with obesity in the cohort of Spanish adults from the European prospective investigation into cancer and nutrirtion. Am. J. Clin. Nutr., 2007, 86, 198–205.Google Scholar

  • 27. Gupta M.K., Frying oil. 2005, in: Edible Oil and Food Products: Products and Applications (ed. F. Shahidi). John Wiley & Sons, Hoboken, NJ, USA, pp. 1–31.Google Scholar

  • 28. Halliwell B., Oxidative stress and cancer: have we moved forward. Biochem. J., 2007, 401 (1), 1–11.CrossrefGoogle Scholar

  • 29. Halvorsen B.L., Blomhoff R., Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements. Food Nutr. Res., 2011, 55, 5792, doi: 10.3402/fnr.v55i0.5792.CrossrefGoogle Scholar

  • 30. Hamsi M.A., Othman F., Das S., Kamisah Y., Thent Z.C., Qodriyah H.M., Zakaria Z., Emran A., Subermaniam K., Jaarin K., Effect of consumption of fresh and heated virgin coconut oil on the blood pressure and inflammatory biomarkers: An experimental study in Sprague Dawley rats. Alexandria J. Med., 2015, 51, 53–63.Google Scholar

  • 31. Innis S.M., Dyer R.A., Dietary canola oil alters hematological indices and blood lipids in neonatal piglets fed formula. J. Nutr., 1999, 129 (7), 1261–1268.Google Scholar

  • 32. Ivanov D.S., Lević J.D., Sredanović S.A., Fatty acid composition of various soybean products. Food Feed Res., 2010, 37 (2), 65–70.Google Scholar

  • 33. Jaarin K., Mustafa M.R., Leong X.F., The effects of heated vegetable oils on blood pressure in rats. Clinics, 2011, 66 (12), 2125–2132.CrossrefGoogle Scholar

  • 34. Katragadda H.R., Fullana A.S., Sidhu S., Carbonell-Barrachina A.A., Emissions of volatile aldehydes from heated cooking oils. Food Chem., 2010, 120, 59–65.CrossrefGoogle Scholar

  • 35. Leong X.F., Mustafa M.R., Das S., Jaarin K., Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil. Lipids Health Dis., 2010, 9, 66.CrossrefGoogle Scholar

  • 36. Leong X.F., Ng C.U., Jaarin K., Mustafa M.R., Effects of repeated heating of cooking oils on antioxidant content and endothelial function. Austin J. Pharmacol. Ther., 2015, 3 (2), 1068.Google Scholar

  • 37. Leong X.F., Salimon J., Mustafa M.R., Jaarin K., Effect of repeatedly heated palm olein on blood pressure-regulating enzymes activity and lipid peroxidation in rats. Malays. J. Med. Sci., 2012, 19 (1), 20–29.Google Scholar

  • 38. Marinova E.M., Seizova K.A., Totseva I.R., Panayotova S.S., Marekov I.N., Momchilova S.M., Oxidative changes in some vegetable oils during heating at frying temperature. Bulg. Chem. Commun., 2012, 44 (1), 57–63.Google Scholar

  • 39. Márquez-Ruiz G., Pérez-Caminò M.C., Dobarganes M.C., Digestibility of fatty acid monomers, dimers and polymers in the rat. J. Am. Oil Chem. Soc., 1992, 69, 930–934.CrossrefGoogle Scholar

  • 40. Márquez-Ruiz G., Pérez-Caminò M.C., Dobarganes M.C., Evaluation of hydrolysis and absorption of thermally oxidized olive oil in non-absorbed lipids in the rat. Ann. Nutr. Metabol., 1993, 37, 121–128.Google Scholar

  • 41. Massy Z.A., Stenvinkel P., Drueke T.B., The role of oxidative stress in chronic kidney disease. Semin. Dialysis, 2009, 22 (4), 405–408.CrossrefGoogle Scholar

  • 42. Matthäus B., Use of palm oil for frying in comparison with other high-stability oils. Eur. J. Lipid Sci. Tech., 2007, 109 (4), 400–9.CrossrefGoogle Scholar

  • 43. Mba O.I., Dumont M., Ngadi M., Palm oil: processing, characterization and utilization in the food industry – A review. Food Biosci., 2015, 10, 26–41.CrossrefGoogle Scholar

  • 44. Meacher D.M., Menzel D.B., Depletion in lung cells by low-molecular weight aldehydes. Cell Biol. Toxicol., 1999, 15, 163–171.CrossrefGoogle Scholar

  • 45. Mesembe O.E., Ibanga I., Osim E.E., The effects of fresh and thermoxidized palm oil diets on some haematological indices in rat. Niger. J. Physiol. Sci., 2004, 19 (1–2), 86–91.Google Scholar

  • 46. Mudau M., Genis A., Lochner A., Strijdom H., Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc. J. Afr., 2012, 24 (4), 222–231.CrossrefGoogle Scholar

  • 47. Mukherjee S., Mitra A., Health effects of palm oil. J. Hum. Ecol. 2009, 26 (3), 197–203.Google Scholar

  • 48. Nakbi A., Tayeb W., Dabbou S., Chargui I., Issaoui M., Zakhama A., Miled, A., Hypolipidemic and antioxidant activities of virgin olive oil and its fractions in 2, 4-dichlorophenoxy acetic acid-treated rats. Nutr., 2012, 28, 81–91.CrossrefGoogle Scholar

  • 49. Naz S., Siddiqi R., Sheikh H., Sayeed S.A., Deterioration of olive, corn and soybean oils due to air, light, heat and deep-frying. Food Res. Int., 2005, 38, 127–134.CrossrefGoogle Scholar

  • 50. Oboh G., Falade A.O., Ademiluyi A.O., Effect of thermal oxidation on the physico-chemical properties, malondialdehyde and carotenoid contents of palm oil. Riv. Ital. Sostanze Gr., 2014, 91 (1), 59–65.Google Scholar

  • 51. O’Brien R., Fats and oils formulating and processing for applications. Formulating and Processing for Applications (3rd ed.). CRC Press. 2008, pp. 37–40.Google Scholar

  • 52. Odia S.J., Ofori S., Maduka O., Palm oil and the heart: A review. World J. Cardiol., 2015, 7 (3), 144–149.Google Scholar

  • 53. Oil World, Oil World Annual, 2013. Retrieved from [http://www.oilworld.biz/app.php], Released June 2013.

  • 54. Olivero-David R., Paduano A., Fogliano V. et al., Effect of thermally oxidized oil and fasting status on the short-term digestibility of ketolinoleic acids and total oxidized fatty acids in rats. J. Agric. Food Chem., 2011, 59, 4684–4691.CrossrefGoogle Scholar

  • 55. Ong A.S., Goh S.H., Palm oil: a healthful and cost-effective dietary component. Food Nutr. Bull., 2002, 23, 11–22.CrossrefGoogle Scholar

  • 56. Onyeali E.U., Onwuchekwa A.C., Monago C.C., Monanu M.O., Plasma lipid profile of wistar albino rats fed palm oil supplemented diets. Int. J. Biol. Chem. Sci., 2010, 4 (4), 1163–1169.Google Scholar

  • 57. Owen R.W., Giacosa A., Hull W.E., Haubner R., Wurtele G., Spiegelhalder B., Bartsch H., Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol., 2000, 1, 107–112.CrossrefGoogle Scholar

  • 58. Oyewole O.E., Amosu A.M., Public health nutrition concerns on consumption of red palm-oil (RPO): the scientific facts from literature. Afr. J. Med. Med. Sci., 2010, 39, 255–262.Google Scholar

  • 59. Peers K.E., Swoboda P.A.T., Deterioration of sunflower oil under simulated frying conditions and during small scale frying of potato chips. J. Sci. Food Agric., 1982, 33 (4), 389–395.CrossrefGoogle Scholar

  • 60. Pohanka M., Alzheimer’s disease and oxidative stress: a review. Curr. Med. Chem., 2014, 21 (3), 356–364.Google Scholar

  • 61. Ramana K.V., Srivastava S., Singhal S.S., Lipid peroxidation products in human health and disease. Oxid. Med. Cell Longev., 2013, dx.doi.org/10.1155/2013/583438.CrossrefGoogle Scholar

  • 62. Ramond A., Godin-Ribuot D., Ribuot C., Totoson P., Koritchneva I., Cachot S., Levy P., Joyeux-Faure M., Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam. Clin. Pharmacol., 2013, 27 (3), 252–261.CrossrefGoogle Scholar

  • 63. Rogalski M., Szterk A., Oxidative stability of α-linolenic acid in corn chips enriched with linseed oil pro/antioxidative activity of tocopherol. J. Am. Oil Chem. Soc., 2015, 92 (10), 1461–1471.CrossrefGoogle Scholar

  • 64. Sadoudi R., Ammouche A., Ali A.D., Effect of ingestion of thermally oxidized sunflower oil on the fatty acid composition and histological alteration of rat liver and adipose tissue in development. Afr. J. Agric. Res., 2013, 8 (24), 3107–3112.Google Scholar

  • 65. Sadoudi R., Ammouche A., Ali A.D., Thermal oxidative alteration of sunflower oil. Afr. J. Food Sci., 2014, 8 (3), 116–121.Google Scholar

  • 66. Salar A., Faghih S., Pishdad G.R., Rice bran oil and canola oil improve blood lipids compared to sunflower oil in women with type-2 diabetes: a randomized, single-blind controlled trial. J. Clin. Lipidol., 2016, 10, 299–305.Google Scholar

  • 67. Sayon-Orea C., Bes-Rastrollo M., Basterra-Gortari F.J. et al., Consumption of fried foods and weight gain in a Mediterranean cohort: the SUN project. Nutr. Metab. Cardiovasc. Dis., 2013, 23, 144–150.CrossrefGoogle Scholar

  • 68. Sayon-Orea C., Martínez-González M.A., Gea A. et al., Consumption of fried foods and risk of metabolic syndrome: the SUN cohort study. Clin. Nutr., 2014, 33, 545–549.CrossrefGoogle Scholar

  • 69. Seppanen C.M., Song Q.H., Csallany A.S., The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats and food systems. J. Am. Oil Chem. Soc. 2010, 87, 469–481.CrossrefGoogle Scholar

  • 70. Shastry C.S., Patel N.A., Joshi H., Aswathanarayana B.J., Evaluation of effect of reused edible oils on vital organs of wistar rats. Nitte University J. Health Sci., 2011, 1 (4), 10–15.Google Scholar

  • 71. Stocker R., Yamamoto Y., Mc Donagh A.F., Glazer A.N., Ames B.N., Bilirubin is antioxidant of possible physiological importance. Science, 1987, 235, 1043–1046.CrossrefGoogle Scholar

  • 72. Szterk A., Rogalski M., Szymborski T., The impact of linseed oil lipids on the physical properties of corn crisps and the possibility of obtaining crisps enriched with n-3 fatty acids. J. Am. Oil Chem. Soc., 2015, 92 (8), 1195–1203.CrossrefGoogle Scholar

  • 73. Tripoli E., Giammanco M., Tabacchi G., Di Majo D., Giammanco S., La Guardia M., The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr. Res. Rev., 2005, 18, 98–112.CrossrefGoogle Scholar

  • 74. USDA National Nutrient Database for Standard Reference. 2008; Release 21.Google Scholar

  • 75. Vaskova H., Buckova M., Thermal degradation of vegetable oils: spectroscopic measurement and analysis. Procedia Eng., 2015, 100, 630–635.CrossrefGoogle Scholar

  • 76. Wang C., Harris W.S., Chung M., Lichtenstein A.H., Balk E.M., Kupelnick B., Jordan H.S., Lau J., n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am. J. Clin. Nutr., 2006, 84 (1), 5–17.Google Scholar

  • 77. Warner K., Chemical and physical reactions in oil during frying. 2004, in: Frying Technology and Practice (eds. M.K. Gupta, K. Warner, P. J. White). AOCS., Champaign, pp. 16–28.Google Scholar

  • 78. Williams M.J., Sutherland W.H., McCormick M.P., de Jong S.A., Walker R.J., Wilkins G.T., Impaired endothelial function following a meal rich in used cooking fat. J. Am. Coll. Cardiol., 1999, 33, 1050–1055.CrossrefGoogle Scholar

  • 79. WHO, World Health Organization, Diet nutrition and the prevention of chronic diseases. Report. 2003, 82–88.Google Scholar

  • 80. Yang H., Jin X., Kie Lam C.W., Yan S.K., Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med., 2011, 49 (11), 1773–1782.Google Scholar

About the article

Received: 2016-03-17

Revised: 2016-06-03

Accepted: 2016-07-15

Published Online: 2016-11-30

Published in Print: 2017-06-01


Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, DOI: https://doi.org/10.1515/pjfns-2016-0028.

Export Citation

© 2017 Ayodeji Osmund Falade et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dominik Kmiecik, Joanna Kobus-Cisowska, and Józef Korczak
LWT - Food Science and Technology, 2017, Volume 85, Page 275

Comments (0)

Please log in or register to comment.
Log in