Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

4 Issues per year

IMPACT FACTOR 2016: 1.276

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2015: 0.345
Source Normalized Impact per Paper (SNIP) 2015: 0.516

Open Access
See all formats and pricing
In This Section

Evaluation of Seasonal Variations in the Glucosinolate Content in Leaves and Roots of Four European Horseradish (Armoracia rusticana) Landraces

Ewa Ciska
  • Corresponding author
  • Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10–747 Olsztyn, Poland
  • Email:
/ Marcin Horbowicz
  • Department of Plant Physiology and Genetics, Siedlce University of Natural Sciences and Humanities, 08–110 Siedlce, Prusa 12, Siedlce, Poland
/ Maria Rogowska
  • State Higher Vocational School, Batorego 64C, 96–100 Skierniewice, Poland
/ Ryszard Kosson
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96–100 Skierniewice, Poland
/ Natalia Drabińska
  • Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10–747 Olsztyn, Poland
/ Joanna Honke
  • Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10–747 Olsztyn, Poland
Published Online: 2017-02-23 | DOI: https://doi.org/10.1515/pjfns-2016-0029


In comparison with other cruciferous vegetables, horseradish has rarely been the object of scientific research, and the knowledge about the composition, content and distribution of glucosinolates (GLS) in different organs of horseradish plants is limited. Therefore, the aim of this study was to evaluate changes in the GLS content in leaves and roots of four horseradish landraces during the growing season.

The presence of 13 GLS was determined in the examined horseradish tissues, and glucoraphanin, glucoraphenin and napoleiferin were noted for the first time in the species. During the growing season, the content of individual GLS changed significantly. The rate and direction of these changes varied across the examined landraces and plant organs. In the leaves, between May and June, the content of sinigrin, the main GLS in all horseradish landraces, decreased in Bavarian (40%) and Hungarian (11%) horseradish, increased (22%) in Creamy horseradish, whereas in Danish horseradish, the difference was not significant. Despite the changes observed in the first two months, the highest content of sinigrin was noted in July in all horseradish landraces. During the growing season (August-October), the content of sinigrin fluctuated in the roots of Creamy and Danish landraces, reaching the highest level in October and September, respectively, whereas in the roots of Hungarian and Bavarian landraces, sinigrin concentrations continued to increase and peaked in October. Changes in the content of other, minor GLS during the growing season often differed from those noted in sinigrin levels.

Keywords: horseradish; glucosinolate composition; growing season; leaves; roots


  • 1. Agerbirk N., Olsen C.E. Glucosinolate structures in evolution. Phytochemistry, 2012, 77, 16–45. [Crossref] [Web of Science]

  • 2. Agneta R., Lelario F., De Maria S., Möllers C., Bufo S.A., Rivelli A.R., Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 2014, 106, 178–187. [Web of Science] [Crossref]

  • 3. Agneta R., Mollers C., Rivelli A.R., Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: a review. Genet. Resour. Crop Evol., 2013, 60, 1923–1943. [Crossref] [Web of Science]

  • 4. Agneta R., Rivelli A.R., Ventrella E., Lelario F., Sarli G., Bufo S.A., Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI–hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation. J. Agric. Food Chem., 2012, 60, 7474–7482. [Web of Science]

  • 5. Alnsour M., Influence of exogenous factors on glucosinolate accumulation in horseradish (Armoracia rusticana Gaertn., Mey. & Scherb.). PhD thesis. Braunschweig University of Technology, 2013. [http://rzbl04.biblio.etc.tu-bs.de:8080/docportal/servlets/MCRFileNodeServlet/DocPortal_derivate_00029574/Thesis.pdf;jsessionid=1B8F50A662E70ABEC049B33955733266].

  • 6. Appel H.M., Cocroft R.B., Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 2014, 175, 1257–1266. [Web of Science]

  • 7. Chen S., Andreasson E., Update on glucosinolate metabolism and transport. Plant Physiol. Biochem., 2001, 39, 743–758. [Crossref]

  • 8. Chen S.X., Petersen B.L., Olsen C.E., Schulz A., Halkier B.A., Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol., 2001, 127, 194–201. [Crossref]

  • 9. Ciska E., Honke J., Kozłowska H., Effect of light conditions on the contents of glucosinolates in germinating seeds of white mustard, red radish, white radish, and rapeseed. J. Agric. Food Chem., 2008, 56, 9087–9093. [Web of Science] [Crossref]

  • 10. Ciska E., Martyniak-Przybyszewska B., Kozłowska H., Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem., 2000, 48, 2862–2867. [Crossref]

  • 11. Ciska E., Pathak D., Glucosinolate derivatives in stored fermented cabbage. J. Agric. Food Chem., 2004, 52, 7938–7943. [Crossref]

  • 12. Cleemput S., Becker H., Genetic variation in leaf and stem glucosinolates in resynthesized lines of winter rapeseed (Brassica napus L.). Gen. Res. Crop Evol., 2012, 59, 539–546. [Crossref]

  • 13. Commission of the European Communities (1990). Commission Regulation (EC) No 1864/90 of 29 June 1990 amending Regulation (EEC) No 147/68 on the drawing and reduction of samples and on methods of analysis in respect of oil seed. Brussels: Official Journal of the European Communities. L 170/27-L 170/34.

  • 14. De Maria S., Agneta R., Lelario F., Möllers C., Rivelli A.R., Influence of nitrogen and sulfur fertilization on glucosinolate content and composition of horseradish plants harvested at different development stages. Acta Physiol. Plant, 2016, 38, 91. [Crossref]

  • 15. Fahey J.W., Zalcmann A.T., Talalay P., The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 2001, 56, 5−51. [Crossref]

  • 16. Grob K., Matile P., Capillary GC of glucosinolate-derived horseradish constituents. Phytochemistry, 1980, 19, 1789–1793. [Crossref]

  • 17. Hanschen F.S., Herz C., Schlotz N., Kupke F., Bartolome Rodriguez M.M., Schreiner M., Rohn S., Lamy E., The Brassica epithionitrile 1-cyano-2,3-epithiopropane triggers cell death in human liver cancer cells in vitro. Mol. Nutr. Food Res., 2015, 59, 2178–2189. [Web of Science]

  • 18. Higdon J.V., Delage B., Williams D.E., Dashwood R.H., Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res., 2007, 55, 224–36. [Web of Science] [Crossref]

  • 19. Horbowicz M., Rogowska M., Content of isothiocyanates and flavonols in roots during vegetation of two types horseradish. Veg. Crops Res. Bull., 2006, 65, 95–104.

  • 20. Huseby S., Koprivova A., Lee B.R., Saha S., Mithen R., Wold A.B., Bengtsson G.B., Kopriva S., Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot., 2013, 64, 1039–1048. [Web of Science] [Crossref]

  • 21. Ishida M., Hara M., Fukino N., Kakizaki T., Morimitsu Y., Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci., 2014, 64, 48–59. [Crossref]

  • 22. Jørgensen M.E., Nour-Eldin H.H., Halkier B.A., Transport of defense compounds from source to sink: lessons learned from glucosinolates. Trends Plant Sci., 2015, 20, 508–514. [Web of Science] [Crossref]

  • 23. Kosson H., Horbowicz M., Some quality characteristics including isothiocyanates content in horseradish cream as affected by storage period. Veg. Crops Res. Bull., 2009, 71, 123–132.

  • 24. Li X., Kushad M.M., Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). J. Agric. Food Chem., 2004, 52, 6950–6955. [Crossref]

  • 25. Li Y.C., Kiddle G., Bennett R., Doughty K., Wallsgrove R., Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L. Ann. Appl. Biol., 1999, 134, 131–136. [Crossref]

  • 26. Madsen S.R., Olsen C.E., Nour-Eldin H.H., Elucidating the role of transport processes in leaf glucosinolate distribution. Plant Physiol., 2014, 166, 1450–1462. [Crossref] [Web of Science]

  • 27. Magrath R., Bano F., Morgner M., Parkin I., Sharpe A., Lister C., Dean C., Turner J., Lydiate D., Mithen R., Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity, 1994, 72, 290–299. [Crossref]

  • 28. Mevy J.P., Rabier J., Quinsac A., Krouti M., Ribaillier D., Glucosinolate contents of regenerated plantlets from embryoids of horseradish. Phytochemistry, 1997, 44, 1469–1471. [Crossref]

  • 29. Mølmann J.A.B., Steindal A.L.H., Bengtsson G.B., Seljasen R., Lea P., Skaret J., Johansen T.J., Effects of temperature and photoperiod on sensory quality and contents of glucosinolates, flavonols and vitamin C in broccoli florets. Food Chem., 2015, 172, 47–55. [Web of Science]

  • 30. Redovniković R.I., Peharec P., Krsnik-Rasol M., Delonga K., Brkić K., Vorkapić-Furač J., Glucosinolate profiles, myrosinase and peroxidase activity in horseradish (Armoracia lapathifolia Gilib.) plantlets, tumour and teratoma tissues. Food Technol. Biotech., 2008, 46, 317−321.

  • 31. Sampliner D., Miller A., Ethonobotany of horseradish (Armoracia rusticana, Brassicaceae) and its wild relatives (Armoracia ssp.): reproductive biology and local uses in their native ranges. Econ. Bot., 2009, 63, 303–313. [Crossref]

  • 32. Shin I.S., Masuda H., Naohide K., Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int. J. Food Microbiol., 2004, 94, 255–261. [Crossref]

  • 33. Tanii H., Higashi T., Nishimura F., Higuchi Y., Saijoh K., Effects of cruciferous allyl nitrile on phase 2 antioxidant and detoxification enzymes. Med. Sci. Mon., 2008, 14, 189–92.

  • 34. Wagner A.E., Boesch-Saadatmandi C., Dose J., Schultheiss G., Rimbach G., Anti-inflammatory potential of allyl isothiocyanate – role of Nrf2, NF-κB and microRNA-155. J. Cell Mol. Med., 2012, 16, 836–843.

  • 35. Wedelsbäck Bladh K., Olsson K.M., Introduction and use of horseradish (Armoracia rusticana) as food and medicine from antiquity to the present: emphasis on the Nordic countries. J. Herbs Spices Med. Plants, 2011, 17, 197–213. [Crossref]

  • 36. Wedelsbäck Bladh K., Olsson K.M., Yndgaard F., Evaluation of glucosinolates in Nordic horseradish (Armoracia rusticana). Bot. Lithuanica, 2013, 19, 48–56.

  • 37. Xiao D., Srivastava S.K., Lew K.L., Zeng Y., Hershberger P., Johnson C.S., Trump D.L., Singh S.V., Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis, 2003, 24, 891–897. [Crossref]

  • 38. Zhang Y., Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010, 54, 127–135. [Web of Science] [Crossref]

About the article

Received: 2016-03-10

Revised: 2016-06-13

Accepted: 2016-07-15

Published Online: 2017-02-23

Citation Information: Polish Journal of Food and Nutrition Sciences, ISSN (Online) 2083-6007, DOI: https://doi.org/10.1515/pjfns-2016-0029. Export Citation

Comments (0)

Please log in or register to comment.
Log in