Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Sport and Tourism

The Journal of Jozef Pilsudski University of Physial Education in Warsaw, Faculty of Physical Education and Sport in Biala Podlaska

4 Issues per year


Index Copernicus: ICV 2016 = 100.00
Ministry of Science and Higher Education: 14 points

Open Access
Online
ISSN
2082-8799
See all formats and pricing
More options …

The Influence of Therapeutic Training on Changes in Selected Biomechanical Variables After an Anterior Cruciate Ligament Reconstruction

Marta Jarocka
  • Corresponding author
  • The Josef Pilsudski University of Physical Education in Warsaw, 1 Faculty of Physical Education and Sport in Biala Podlaska, Department of Physiotherapy
  • Faculty of Physical Education and Sport, Department of Physiotherapy, 2 Akademicka Street, 21-500 Biala Podlaska, tel.: +48 83 3428807, fax: +48 83 3428800
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Czaplicki
  • The Josef Pilsudski University of Physical Education in Warsaw, Department of Biomechanics and IT
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-10 | DOI: https://doi.org/10.2478/pjst-2013-0002

Abstract

Introduction. The number of arthroscopic reconstructions of the anterior cruciate ligament (ACL) has been increasing not only among competitive athletes, but also among recreational athletes. The monitoring of the rehabilitation process in order to determine a safe time to return to the pre-injury activity is thus of great practical importance. The aim of this paper is to analyse the changes in selected biomechanical variables which occur after the therapeutic training following an anterior cruciate ligament reconstruction. Materials and methods. Twenty nine males (age 27.3 ± 5.7 years) after the anterior cruciate ligament reconstruction participated in the study. A quadruple-stranded semitendinosus/gracilis graft was used for the reconstruction. The biomechanical evaluation of the rehabilitation process was provided by an isokinetic dynamometer Biodex System Pro-3 working at speeds of 60 deg/s and 180 deg/s during testing the knee extensor and flexor muscles. In the case of an injured limb, the absolute peak torque, relative peak torque, average power and hamstring/ quadriceps (H/Q) ratio were determined. In addition, the values of flexor and extensor torques for healthy and injured limbs were compared. The study was carried out in four stages: before the surgery, three, six and twelve months after the surgery. Results and analyses. The results showed significant differences in each value between various stages of the biomechanical rehabilitation process of the knee. The applied therapeutic training influenced significantly the changes in the values of the tested variables. The results have confirmed that the biomechanical measurements can be treated as a supplementation to the clinical evaluation of the patient after ACL reconstruction. They may also be used for the optimisation of the therapeutic training.

Keywords: anterior cruciate ligament; arthroscopy; therapeutic training; monitoring of rehabilitation process

  • Widuchowski J., Widuchowski W. (2004). Knee injuries and their sequelae: epidemiology, patomechanism and classification schemes. Polish Journal of Physiotherapy 4(4), 307-315.Google Scholar

  • Jarocka M., Czaplicki A. (2009). Analysis of changes in biomechanical parameters in the process of rehabilitation after arthroscopic reconstruction of the anterior cruciate ligament of the knee. In C. Urbanik, A. Mastalerz (Eds.), Biomechanics of sport and rehabilitation - selected issues (pp. 99-110). Warszawa: AWF. [in Polish]Google Scholar

  • Bator A., Kasperczyk T. (2000). Health training with elementsof physiotherapy. Kraków: AWF. [in Polish]Google Scholar

  • Groffik D. (2009). Methods of physical activity in the preventionand treatment. Katowice: AWF. [in Polish]Google Scholar

  • Lysholm J., Gillquist J. (1982). Evaluation of knee ligament surgery results with special emphasis on use of scoring scale. The American Journal of Sports Medicine 10(3), 150-154.CrossrefGoogle Scholar

  • Dzierżanowski M., Molski P., Bieñkowska A., Kańmierczak U., Hagner W. (2006). Multi-faceted look at the development of muscle proprioceptive in the process of rehabilitation of patients after anterior cruciate ligament reconstruction (ACL). Kwartalnik Ortopedyczny 53(1), 18-25. [in Polish]Google Scholar

  • Marshall J.L., Fetto J.F., Bolero P.M. (1977). Knee ligament injuries: a standard evaluation method. Clinical Orthopaedicsand Related Research 123(2), 115-129.Google Scholar

  • Walaszek R., Kasperczyk T., Magiera L. (2007). Diagnosticsin physiotherapy and massage. Kraków: Biosport. [in Polish]Google Scholar

  • Kannus P., Järvinen M., Paakkala T. (1988). A radiological scoring scale for an exact evaluation of posttraumatic osteoarthritis after knee ligament injuries. International Orthopaedics 12(4), 291-297.CrossrefGoogle Scholar

  • Hislop H.J., Perrine J.J. (1967). The isokinetic concept of exercise. Physical Therapy. 47(2), 114-117.PubMedGoogle Scholar

  • Hiemstra L., Weber S., MacDonald P., Kriellaars D. (2004). Hamstring and quadriceps strength balance in normal and hamstring anterior cruciate ligament-reconstructed subjects. Clinical Journal of Sport Medicine 14(5), 274-280.CrossrefGoogle Scholar

  • Konishi Y., Ikeda K., Nishino A., Sunaga M., Aihara Y., Fukubayashi T. (2006). Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament repair. Scandinavian Journal of Medicine& Science in Sports 17(6), 656-661.Google Scholar

  • Natri A., Jarvinen M., Latvala K., Kannus P. (1996). Isokinetic muscle performance after anterior cruciate ligament surgery. International Journal of Sports Medicine 17(3), 223-228.CrossrefGoogle Scholar

  • Ciemniewska-Gorzela K. (2010). Knee function after anterior cruciate ligament reconstruction. Doctoral thesis, Uniwersytet Medyczny, Poznañ. [in Polish]Google Scholar

  • Czamara A.(2008). Moments of muscular strength of knee joint extensors and flexors during physiotherapeutic procedures following anterior cruciate ligament reconstruction in males. Acta of Bioengineering and Biomechanics10(3), 37-44.Google Scholar

  • Biodex multi-joint system - 3 pro. Setup/operational manual. Shirley, USA: Biodex Medical Systems.Google Scholar

  • Urabe Y., Ochi M., Orani K. (2002). Changes in isokinetic muscle strength of the lower extremity in recreational athletes with anterior cruciate ligament reconstruction. Journalof Sport Rehabilitation 11(4), 252-267.Google Scholar

  • Michnik R., Jurkojæ J., Czapla K. (2012). Biomechanical evaluation of strength abilities of female volleyball players. Modelowanie Inżynierskie 44(2), 217-222. [in Polish]Google Scholar

  • Coombs R., Narbutt G. (2002). Development in the use of hamstring/quadriceps ratio for the assessment of muscle balance. Journal of Science and Medicine in Sport 1(3), 56-62.Google Scholar

  • Grygorowicz M., Kubacki J., Pilis W., Gieremek K., Rzepka R. (2010). Selected isokinetic tests in knee injury prevention. Biology of Sport 27(1), 47-51.CrossrefGoogle Scholar

  • Kannus P. (1988). Ratio of hamstring to quadriceps femoris muscles' strength in the anterior cruciate ligament insufficient knee. Relationship to long-term recovery. PhysicalTherapy in Sport 68(6), 961-965.Google Scholar

  • Konishi Y., Oda T., Tsukazaki S., Kinugasa R. & Fukubayashi T. (2012). Relationship between quadriceps femoris muscle volume and muscle torque at least 18 months after anterior cruciate ligament reconstruction. Scandinavian Journalof Medicine & Science in Sports 22(6), 791-796.Web of ScienceGoogle Scholar

  • Wychowañski M. (2008). Some methods for assessing the dynamics of human movement. Warszawa: AWF. [in Polish]Google Scholar

About the article

Published Online: 2013-07-10

Published in Print: 2013-03-01


Citation Information: Polish Journal of Sport and Tourism, ISSN (Online) 2082-8799, ISSN (Print) 1899-1998, DOI: https://doi.org/10.2478/pjst-2013-0002.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in