Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Journal of Veterinary Sciences

The Journal of Committee of Veterinary Sciences of Polish Academy of Sciences and University of Warmia and Mazury in Olsztyn

4 Issues per year


IMPACT FACTOR 2016: 0.697
5-year IMPACT FACTOR: 0.773

CiteScore 2016: 0.73

SCImago Journal Rank (SJR) 2016: 0.315
Source Normalized Impact per Paper (SNIP) 2016: 0.486

Open Access
Online
ISSN
2300-2557
See all formats and pricing
More options …

Preliminary studies on the reaction of growing geese (Anser anser f. domestica) to the proximity of wind turbines

J. Mikołajczak
  • Corresponding author
  • Department of Animal Nutrition and Feed Management, Faculty of Animal Breeding and Biology, University of Technology and Life Sciences in Bydgoszcz, Mazowiecka 28, 85-084 Bydgoszcz
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Borowski
  • Department of Agricultural Engineering, Faculty of Mechanical Engineering, University of Technology and Life Sciences in Bydgoszcz, Prof. Kaliskiego 7, 85-789 Bydgoszcz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Marć-Pieńkowska
  • Department of Animal Nutrition and Feed Management, Faculty of Animal Breeding and Biology, University of Technology and Life Sciences in Bydgoszcz, Mazowiecka 28, 85-084 Bydgoszcz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Odrowąż-Sypniewska
  • Department of Laboratory Medicine, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Z. Bernacki
  • Department of Poultry Breeding, Faculty of Animal Breeding and Biology, University of Technology and Life Sciences in Bydgoszcz, Mazowiecka 28, 85-084 Bydgoszcz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Siódmiak
  • Department of Laboratory Medicine, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Szterk
  • Department of Animal Nutrition and Feed Management, Faculty of Animal Breeding and Biology, University of Technology and Life Sciences in Bydgoszcz, Mazowiecka 28, 85-084 Bydgoszcz
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-20 | DOI: https://doi.org/10.2478/pjvs-2013-0096

Abstract

Wind farms produce electricity without causing air pollution and environmental degradation. Unfortunately, wind turbines are a source of infrasound, which may cause a number of physiological effects, such as an increase in cortisol and catecholamine secretion. The impact of infrasound noise, emitted by wind turbines, on the health of geese and other farm animals has not previously been evaluated. Therefore, the aim of this study was to determine the effect of noise, generated by wind turbines, on the stress parameters (cortisol) and the weight gain of geese kept in surrounding areas. The study consisted of 40 individuals of 5- week- old domestic geese Anser anser f domestica, divided into 2 equal groups. The first experimental gaggle (I) remained within 50 m from turbine and the second one (II) within 500 m. During the 12 weeks of the study, noise measurements were also taken. Weight gain and the concentration of cortisol in blood were assessed and significant differences in both cases were found. Geese from gaggle I gained less weight and had a higher concentration of cortisol in blood, compared to individuals from gaggle II. Lower activity and some disturbing changes in behavior of animals from group I were noted. Results of the study suggest a negative effect of the immediate vicinity of a wind turbine on the stress parameters of geese and their productivity.

Keywords: wind turbine; domestic goose; anser anser; noise; cortisol

References

  • Alekseev SV (1985) Myocardial ischemia in rats exposed to infrasound. Gigiena Truda i Prof. Zabolewania 8: 34-38.Google Scholar

  • Ames DR, Arehart LA (1972) Physiological response of lambs to auditory stimuli. J Anim Sci 34: 994-998.PubMedGoogle Scholar

  • Augustyńska D (2009) Wartości graniczne ekspozycji na infradźwięki - przegląd piśmiennictwa. Podstawy i Metody Oceny 1rodowiska Pracy 2: 5-15.Google Scholar

  • Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25: 180-189.Web of ScienceCrossrefPubMedGoogle Scholar

  • Biesiada-Drzazga B, Górski J, Górska A (2006) Analysis of slaughter value and muscle fibre thickness of selected muscles in geese broilers as related to feeding applied during the rearing period. Anim Sci Pap Rep 24 (S-2): 37-44.Google Scholar

  • Bohne BA, Harding GW (2000) Degeneration in the cochlea after noise damage: primary versus secondary events. Am J Otol 21: 505-509.PubMedGoogle Scholar

  • Cited by Pawlas K (2009) Wpływ infradźwięków i hałasu o niskich częstotliwościach na człowieka- przegląd piśmiennictwa. Podstawy i Metody Oceny 1rodowiska Pracy 2: 27-64.Google Scholar

  • De Jong IC, van Voorst AS, Erkens JH, Ehlhardt DA, Blokhuis HJ (2001) Determination of the circadian rhythm in plasma corticosterone and catecholamine concentrations in growing broiler breeders using intravenous cannulation. Physiol Behav 74: 299-304.Google Scholar

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Jolls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269-301.PubMedGoogle Scholar

  • Flydal K, Eftestol S, Reimers E, Colman JE (2004) Effects of wind turbines on area use and behaviour of semi-domestic reindeer in enclosures. Rangifer 24: 55-66.Google Scholar

  • Francis CD, Ortega CP, Cruz A (2009) Noise Pollution Changes Avian Communities and Species Interactions. Curr Biol 19: 1415-1419.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Golec M, Golec Z, Cempel C (2006) Hałas turbiny wiatrowej VESTAS V80 podczas eksploatacji. Diagnostyka 1: 115-120.Google Scholar

  • Hargreaves AL, Hutson GD (1990) Changes in heart rate, plasma cortisol and haematocrit of sheep during a shearing procedure. Appl Anim Behav Sci 26: 91-101.CrossrefGoogle Scholar

  • Jadhav NV, Awati B, Kulkarni S, Waghmare PG, Suranagi MD, Saxena MJ, Ravikanth K, Dandale M, Shivi Maini (2013) Performance of Layer Birds Supplemented with Herbal Antistress Product Ayucee and Synthetic Vitamin C under Physiological Heat Stress. Mal J Anim Sci 16: 67-78.Google Scholar

  • Johnson DL (1980) The effects of high level infrasound. Porceed of Conference on Low Fre-quency Noise, Moller H, Rubak P Aaalbork: 1-14. Cited by Pawlas K (2009) Wpływ infradźwięków i hałasu o niskich częstotliwościach na człowieka- przegląd piśmiennictwa. Podstawy i Metody Oceny 1rodowiska Pracy 2: 27-64.Google Scholar

  • Kerr MG (2002) Veterinary Laboratory Medicine, 2nd ed., Blackwell Science, Oxford.Google Scholar

  • Kłos K, Sokołowicz Z, Badowski J, Bielińska H (2010) Określenie możliwości szacowania umięśnienia nóg gęsi Białych Kołudzkich na podstawie pomiarów przyżyciowych. Roczniki Naukowe Zootechniki 37: 55-62.Google Scholar

  • Koren L, Nakagawa S, Burke T, Soma KK, Wynne- Edwards KE, Geffen E (2012) Non-breeding feather concentrations of testosterone, corticosterone and cortisol are associated with subsequent survival in wild house sparrows. Proc Biol Sci 279: 1560-1566.Web of ScienceGoogle Scholar

  • Landström U, Lundstro¨m R, Bystro¨mM (1983) Exposure to infrasound - Perception and changes in wakefulness. J Low Freq Noise Vib 2: 1-11.Google Scholar

  • Lisurek M, Bernhardt R (2004) Modulation of aldosterone and cortisol synthesis on the molecular level. Mol Cell Endocrinol 215: 149-159.Google Scholar

  • Łukaszewicz E, Adamski M, Kowalczyk A (2008) Correlations between body measurements and tissue composition of oat-fattened White Kołuda geese at 17 weeks of age. Br Poult Sci 49: 21-27.CrossrefWeb of ScienceGoogle Scholar

  • Nekhoroshev AS, Glinchikov VV (1992) Effect of infrasound on change in the auditory cortex. Gig Sanit 7-8: 62-64.Google Scholar

  • Palme R, Rettenbacher S, Touma C, El- Bahr SM, Mostl E (2005) Stress Hormones in Mammals and Birds: Comparative Aspects Regarding Metabolism, Excretion, and Noninvasive Measurement in Fecal Samples. Ann N Y Acad Sci 1040: 162-171.Google Scholar

  • Pawlas K (2009) Wpływ infradźwięków i hałasu o niskich częstotliwościach na człowieka- przegląd piśmiennictwa. Podstawy i Metody Oceny Środowiska Pracy 2: 27-64.Google Scholar

  • PN-EN 61400-11 (2001) Turbozespoły wiatrowe. Część 11: Procedury pomiaru hałasu. In: Normalizacyjna Komisja Problemowa nr 137 ds. Urządzeń Cieplno-Mechanicznych w Energetyce.Google Scholar

  • Rabin LA, Coss RG, Owings DH (2006) The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biol Conserv 131: 410-420.Google Scholar

  • Schmidt KL, Soma KK (2008) Cortisol and corticosterone in the songbird immune and nervous systems: local vs. systemic levels during development. Am J Physiol Regul Integr Comp Physiol 295: 103-110.Web of ScienceGoogle Scholar

  • Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, Aleem M, Rehman H (2010) Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult Sci 89: 1934-1938.Web of ScienceGoogle Scholar

  • Statistica (2008) StatSoft Poland (data analysis software system), Version 8.0 PL. Kraków, Poland.Google Scholar

  • Svidovyi VI, Glinchikov VV (1987) Action of infrasound on the lung structure. Noise and Vibration Bulletin: 153-154. Cited by Pawlas K (2009) Wpływ infradźwięków i hałasu o niskich częstotliwościach na człowieka- przegląd piśmiennictwa. Podstawy i Metody Oceny 1rodowiska Pracy 2: 27-64.Google Scholar

  • Swathi B, Gupta PS, Nagalakshmi D, Reddy AR (2012) Effect of Herbals Tulsi and Turmeric on Cortisol, Enzymatic and Biochemical Constituents in Serum of Heat Stressed Broilers. Indian J Anim Nutr 29: 284-286.Google Scholar

  • Tokarzewski S, Wernicki A, Kankofer M, Urban- Chmiel R, Arciszewski M (2006) Transport jako czynnik wzmagający reakcje stresowe u brojlerów kurzych. Annales Universitatis Mariae Curie Skłodowska LXI: 127-134. Google Scholar

  • van den Berg GP (2004) Effects of the wind profile at night on wind turbine sound. J Sound Vib 277: 955-970.Google Scholar

  • Walsh MT, Beldegreen RA, Clubb SL, Chen CL (1985) Effect of exogenous ACTH on serum corticosterone and cortisol concentrations in the Moluccan cockatoo (Cacatua moluccensis). Am J Vet Res 46: 1584-1588. PubMedGoogle Scholar

About the article

Published Online: 2014-05-20

Published in Print: 2013-12-01


Citation Information: Polish Journal of Veterinary Sciences, ISSN (Online) 1505-1773, DOI: https://doi.org/10.2478/pjvs-2013-0096.

Export Citation

© Polish Academy of Sciences, Committee of Veterinary Sciences &University of Warmia and Mazury in Olsztyn. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Roseanna C. N. Agnew, Valerie J. Smith, and Robert C. Fowkes
Journal of Wildlife Diseases, 2016, Volume 52, Number 3, Page 459
[2]
Rafał Łopucki and Iwona Mróz
Environmental Monitoring and Assessment, 2016, Volume 188, Number 2

Comments (0)

Please log in or register to comment.
Log in