Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Photonics & Lasers in Medicine

See all formats and pricing
More options …

Far infrared radiation (FIR): Its biological effects and medical applications

Ferne Infrarotstrahlung: Biologische Effekte und medizinische Anwendungen

Fatma Vatansever
  • Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
  • Department of Dermatology, Harvard Medical School, Boston, MA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael R. Hamblin
  • Corresponding author
  • Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
  • Department of Dermatology, Harvard Medical School, Boston, MA, USA
  • Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-10-16 | DOI: https://doi.org/10.1515/plm-2012-0034


Far infrared (FIR) radiation (λ=3–100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3–12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects.


Ferne Infrarotstrahlung (far infrared, FIR) (λ=3–100 μm) ist ein Unterbereich des elektromagnetischen Spektrums, der hinsichtlich seiner biologischen Effekte von wissenschaftlichem Interesse ist. Das vorliegende Review konzentriert sich auf den Spektralbereich von 3–12 μm, der sowohl in In-vitro- als auch in In-vivo-Studien mit Blick auf die Stimulation von Zellen und Gewebe untersucht wurde und der eine vielversprechende Behandlungsmodalität für verschiedene medizinische Konditionen darstellt.

Dank des technischen Fortschrittes konnten verschiedene neue Techniken zur Applikation von FIR-Strahlung am menschlichen Körper entwickelt werden. Spezielle Lampen und Saunas, die reine FIR-Strahlung (ohne Anteile von Nahinfrarot- und Mittelinfrarotstrahlung) liefern, sind immer sicherer und effektiver geworden und werden verbreitet für therapeutische Zwecke genutzt. Fasern, die mit FIR-emittierenden Keramik-Nanopartikeln imprägniert und zu Stoffen weiterverarbeitet werden, finden Verwendung als Kleidung oder Verbandsstoffe, die aufgrund der generierten FIR-Strahlung gesundheitliche Vorteile bewirken können.

Keywords: far infrared radiation; radiant heat; black body radiation; biogenetic rays; FIR emitting ceramics and fibers; infrared sauna; Ferne Infrarotstrahlung (FIR); Strahlungswärme; Schwarzkörperstrahlung; biogenetische Strahlen; FIR-emittierende Keramiken und Fasern; Infrarotsauna

About the article

Corresponding author: Michael R. Hamblin, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA

Received: 2012-08-24

Revised: 2012-09-06

Accepted: 2012-09-06

Published Online: 2012-10-16

Published in Print: 2012-11-01

Citation Information: Photonics & Lasers in Medicine, Volume 1, Issue 4, Pages 255–266, ISSN (Online) 2193-0643, ISSN (Print) 2193-0635, DOI: https://doi.org/10.1515/plm-2012-0034.

Export Citation

©2012 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pedro Pérez-Soriano, Roberto Sanchis-Sanchis, Inmaculada Aparicio, and Alfonso Martínez-Nova
International Journal of Clothing Science and Technology, 2018
Yifei Tao, Tenghao Li, Chenxiao Yang, Naixiang Wang, Feng Yan, and Li Li
Polymers, 2018, Volume 10, Number 10, Page 1147
Efstathios Gonos, Konstantinos Voutetakis, Vasiliki Delitsikou, Michael Papacharalampous, Marianthi Sakellari, Elena Favilla, and Mauro Tonelli
Journal of Medicinal Chemistry and Toxicology, 2015, Volume 1, Number 1, Page 1
Fumio Shishikura, Heishun Zen, Ken Hayakawa, Yoshimasa Komatsuzaki, Yasushi Hayakawa, Takeshi Sakai, Toshiteru Kii, and Hideaki Ohgaki
Journal of Nihon University Medical Association, 2018, Volume 77, Number 3, Page 159
Jia-Horng Lin, Ting An Lin, Ting Ru Lin, Jia-Ci Jhang, and Ching-Wen Lou
Journal of Industrial Textiles, 2018, Page 152808371878331
Shanshan Shui, Xia Wang, John Y Chiang, and Lei Zheng
Experimental Biology and Medicine, 2015, Volume 240, Number 10, Page 1257
Jin-min Lee and Kye-ha Kim
Nursing & Health Sciences, 2017
Ke Li, Zheng Zhang, Ning Fei Liu, Shao Qing Feng, Yun Tong, Ju Fang Zhang, Joannis Constantinides, Davide Lazzeri, Luca Grassetti, Fabio Nicoli, and Yi Xin Zhang
Lasers in Medical Science, 2017, Volume 32, Number 3, Page 485
Pei-Kang Chung and Shun-Tung Yen
Journal of Applied Physics, 2015, Volume 118, Number 8, Page 083102
M.Ya. Akhalaya, G.V. Maksimov, A.B. Rubin, J. Lademann, and M.E. Darvin
Ageing Research Reviews, 2014, Volume 16, Page 1

Comments (0)

Please log in or register to comment.
Log in