Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Photonics & Lasers in Medicine


CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2016: 0.230
Source Normalized Impact per Paper (SNIP) 2016: 0.291

Online
ISSN
2193-0643
See all formats and pricing
More options …

Laser interstitial thermal therapy with and without MRI guidance for treatment of brain neoplasms – A systematic review of the literature

Einsatz der interstitiellen Laser-Thermotherapie mit und ohne MRT-Kontrolle zur Behandlung von Gehirntumoren – Ein systematisches Review der Literatur

Jeffrey D. Voigt / Mark Torchia
Published Online: 2014-02-24 | DOI: https://doi.org/10.1515/plm-2013-0055

Abstract

Background and objectives:

The use of laser interstitial thermal therapy (LITT) under magnetic resonance imaging (MRI) guidance has been reported on in the literature in close to 16,000 patients with various forms of malignant and benign neoplasms. This includes studies with over 7600 patients with malignant head and neck cancer; over 250 with malignant (and refractory to other therapies) head and neck cancer; over 6600 with liver cancer; and over 1100 with benign neoplasms. As well, LITT under MRI guidance has been studied in malignant (and refractory to other therapies) lung and breast cancers with close to 300 cases reported on in the literature. To date, the sum total experience of LITT with or without MRI guidance in treating brain neoplasms has not been reported on. It is the intention of this review to do so.

Methods:

A systematic review of the literature was undertaken to identify all studies where one or more patients were treated with LITT with or without MRI guidance (LITT±MRI) for brain neoplasms. The following sources were searched (from 1990 to present): PubMed, Cochrane Review of RCTs, Technology Assessment websites (NICE, CTAF, CADTH, BCBS TEC), clinical guidelines for treating malignant brain neoplasms (NCCN, AANS), relevant clinical journals where the use of LITT would be reported on; and the websites of companies involved in the manufacture and market of these types of products.

Results:

Twenty-three articles (22 peer-reviewed and one abstract) were identified. After duplicate studies (n=6) were removed, 17 studies with 169 patients were identified who received LITT±MRI (mean age, 54±13.3 years; ratio male/female, 66%/34%). Most patients were reported on in the literature as case series. One study however, examined use of LITT + brachytherapy in a randomized fashion. These 169 patients were further broken out by type of tumor(s) and outcomes evaluated. Ninety-nine patients were treated for glioblastoma, recurrent malignant gliomas and, recurrent glioblastomas using LITT as a follow-on/salvage therapy (average age, 58.9 years). LITT used as the sole or as adjunctive therapy appeared to prolong survival (when evaluated against historical cohorts of patients with similar baseline characteristics) versus best/palliative care in this group. This was especially true where LITT was used in brain malignancies refractory to other therapies. Twenty-four patients (average age, 40.9 years) were treated for astrocytomas (WHO I–III) and LITT was used mainly with de novo lesions in areas of inoperability/eloquence. In these tumor types, LITT appeared to be well tolerated and significantly reduced lesion size. Twenty-three patients were treated for metastatic disease (average age, 60.1 years). Equivocal benefit was found in this small cohort. All lesions treated, no matter the tumor type, in these 169 patients were ≤5 cm in diameter. Most patients underwent LITT treatment with Karnofsky index (KI) of ≥60 (where reported). Most patients experienced either a stable or increased KI after LITT (where reported). Perioperative complications (e.g., neurological changes) were mainly transient in nature.

Conclusions:

The largest cohort of patients with recurrent glioblastoma/malignant glioma demonstrated longer survival times with stable to improved KI after LITT. These results compare favorably to second craniotomy procedures for malignant gliomas. Secondly, LITT appears to provide reasonable outcomes in patients where a second craniotomy may not be indicated (deep/inaccessible tumors or tumors in/near areas of eloquence). More published studies are required, most especially in patients with metastatic disease and in less aggressive type cancers based on the small numbers of patients studied in these groups.

Zusammenfassung

Hintergrund und Zielsetzung:

In der Literatur wird über den Einsatz der interstitiellen Laser-Thermotherapie (LITT) unter MRT-Kontrolle in der Behandlung von fast 16.000 Patienten mit verschiedenen Formen bösartiger und gutartiger Tumoren berichtet, davon 7.600 Patienten mit bösartigen Tumoren im Hals-Kopf-Bereich, über 250 Patienten mit therapierefraktären malignen Tumoren in diesem Bereich, über 6.600 Patienten mit Leberkrebs und über 1.100 Patienten mit gutartigen Neubildungen. Hinzu kommen ca. 300 Fälle von Patienten mit malignen (therapierefraktären) Lungen- bzw. Brusttumoren, die ebenfalls mittels LITT unter MRT-Führung therapiert wurden. Derzeit liegt jedoch noch keine Zusammenfassung der gesammelten Erfahrungen bei Anwendung der LITT mit oder ohne MRT-Führung (LITT±MRT) bei der Behandlung von Gehirntumoren vor; dies ist Zielsetzung des vorliegenden Review-Artikels.

Methoden:

Eine systematische Literaturrecherche wurde durchgeführt, um alle Studien zu identifizieren, in denen ein oder mehrere Patienten mit Neoplasien des Gehirns mittels LITT±MRT behandelt wurden. Folgende Quellen wurden (von 1990 an bis heute) durchsucht: PubMed, Cochrane Review randomisierter kontrollierter Studien (randomized controlled trials, RTCs), Technology-Assessment-Webseiten (NICE, CTAF, CADTH, BCBS EGV), klinische Richtlinien für die Behandlung bösartiger Gehirntumoren (NCCN, AANS), relevante klinische Fachzeitschriften, in denen über den Einsatz der LITT berichtet wurde sowie Webseiten von Unternehmen, die entsprechende Behandlungssysteme herstellen und vermarkten.

Ergebnisse:

Insgesamt wurden 23 relevante Artikel (22 peer-reviewed und ein Abstract) identifiziert, davon wurden 6 Zweitstudien ausgenommen. In den verbleibenden 17 Studien wurde über 169 Patienten (Durchschnittsalter: 54±13,3 Jahre; Verhältnis männlich/weiblich: 66%/34%), die mittels LITT±MRT behandelt wurden, berichtet. Bei den meisten Studien handelte es sich um Fallserien. In einer randomisierten kontrollierten Studie wurde der Einsatz der LITT + Brachytherapie versus Brachytherapie ohne LITT untersucht. Die 169 Patienten wurden im weiteren Verlauf hinsichtlich des behandelten Tumortyps sowie der erzielten Behandlungsergebnisse evaluiert. Insgesamt 99 Patienten (Durchschnittsalter: 58,9 Jahre) wurden wegen Glioblastomen, wiederkehrenden malignen Gliomen oder rezidivierenden Glioblastomen mittels LITT als Follow-on oder Notfall-Therapie behandelt. Dabei schien die LITT – eingesetzt als Mono- oder als Zusatztherapie – das Überleben im Vergleich zur bestmöglichen/Palliativ-Behandlung zu verlängern (gemessen an historischen Patientenkohorten mit ähnlichen Basischarakteristika). Dies trifft vor allem bei therapierefraktären Tumoren zu. Insgesamt 24 Patienten (Durchschnittsalter: 40,9 Jahre) wurden wegen Astrozytomen (WHO-Grad I–III) behandelt – vor allem bei De-novo-Läsionen in nicht-operablen bzw. eloquenten Hirnregionen. Bei diesen Tumorarten schien die LITT gut verträglich und führte zu einer deutlichen Reduktion der Läsionsgröße. Bei 23 Patienten (Durchschnittsalter 60,1 Jahre) wurden Metastasen behandelt. In dieser kleinen Kohorte konnte kein eindeutiger Behandlungsvorteil festgestellt werden. Alle behandelten Läsionen, unabhängig von der Art des Tumors, waren ≤5 cm im Durchmesser. Der Karnofsky-Index (KI) der meisten Patienten lag vor der LITT bei KI≥60 (wo berichtet) und war nach LITT stabil oder verbessert (wo berichtet). Perioperative Komplikationen (z. B. neurologische Veränderungen) waren überwiegend vorübergehender Natur.

Schlussfolgerungen:

Bei der größten Kohorte von Patienten mit Glioblastom-Rezidiven/malignen Gliomen konnte nach LITT eine längere Überlebenszeit bei stabilem oder verbessertem KI nachgewiesen werden. Diese Ergebnisse decken sich mit denen nach einer zweiten Kraniotomie bei malignen Gliomen. Zweitens scheint die LITT zu befriedigenden Ergebnisse bei solchen Patienten zu führen, wo eine zweite Kraniotomie nicht durchgeführt werden kann, bspw. bei tief sitzenden bzw. unzugänglichen Tumoren oder Tumoren in oder in der Nähe von eloquenten Hirnbereichen. Mehr Studien sind erforderlich, insbesondere um die Wirksamkeit der LITT bei Patienten mit Metastasen und weniger aggressiven Krebserkrankungen auf der Basis der kleinen Zahl der untersuchten Patienten in diesen Gruppen zu evaluieren.

Keywords: clinical effectiveness; less invasive therapy; glioblastoma

Schlüsselwörter: klinische Wirksamkeit; weniger invasive Therapie; Glioblastom

References

  • [1]

    Higgins KM, Shah MD, Ogaick MJ, Enepekides D. Treatment of early-stage glottic cancer: meta-analysis comparison of laser excision versus radiotherapy. J Otolaryngol Head Neck Surg 2009;38(6):603–12.Google Scholar

  • [2]

    Jäger HR, Taylor MN, Theodossy T, Hopper C. MR imaging-guided interstitial photodynamic laser therapy for advanced head and neck tumors. Am J Neuroradiol 2005;26(5): 1193–200.Google Scholar

  • [3]

    Paiva MB, Bublik M, Wong KE, Blackwell KE, Sercarz JA. Minimally invasive laser-induced thermal therapy (LITT) for head and neck cancer: A comprehensive review. J Clin Oncol (Meeting Abstracts) 2006;24(18 suppl):5572. http://meeting.ascopubs.org/cgi/content/abstract/24/18_suppl/5572 [Accessed on November 22, 2013].

  • [4]

    Dey P, Arnold D, Wight R, MacKenzie K, Kelly C, Wilson J. Radiotherapy versus open surgery versus endolaryngeal surgery (with or without laser) for early laryngeal squamous cell cancer. Cochrane Database Syst Rev 2002;(2):CD002027.Google Scholar

  • [5]

    Dallal HJ, Smith GD, Grieve DC, Ghosh S, Penman ID, Palmer KR. A randomized trial of thermal ablative therapy versus expandable metal stents in the palliative treatment of patients with esophageal carcinoma. Gastrointest Endosc 2001;54(5):549–57.CrossrefGoogle Scholar

  • [6]

    Goor KM, Peeters AJ, Mahieu HF, Langendijk JA, Leemans CR, Verdonck-de Leeuw IM, van Agthoven M. Cordectomy by CO2 laser or radiotherapy for small T1a glottic carcinomas: costs, local control, survival, quality of life, and voice quality. Head Neck 2007;29(2):128–36.CrossrefGoogle Scholar

  • [7]

    Nikfarjam M, Christophi C. Interstitial laser thermotherapy for liver tumours. Br J Surg 2003;90(9):1033–47.CrossrefGoogle Scholar

  • [8]

    Vogl TJ, Eichler K, Zangos S, Mack MG. Interstitial laser therapy of liver tumors. Med Laser Appl 2005;20(2):115–8.CrossrefGoogle Scholar

  • [9]

    Eickmeyer F, Schwarzmaier HJ, Müller FP, Nakic Z, Yang Q, Feidler V. Survival after laser-induced interstitial thermotherapy of colorectal liver metastases – a comparison of first clinical experiences with current therapy results. Rofo 2008;180(1):35–41.Google Scholar

  • [10]

    Vogl TJ, Straub R, Eichler K, Woitaschek D, Mack MG. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: experience with complications in 899 patients (2,520 lesions). Radiology 2002;225(2):367–77.Google Scholar

  • [11]

    Arienti V, Pretolani S, Pacella CM, Magnolfi F, Caspani B, Francica G, Megna AS, Regine R, Sponza M, Antico E, Di Lascio FM. Complications of laser ablation for hepatocellular carcinoma: a multicenter study. Radiology 2008;246(3):947–55.Google Scholar

  • [12]

    Vogl TJ, Straub R, Eichler K, Söllner O, Mack MG. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy – local tumor control rate and survival data. Radiology 2004;230(2):450–8.Google Scholar

  • [13]

    Sala M, Llovet JM, Vilana R, Bianchi L, Solé M, Ayuso C, Brú C, Bruix J; Barcelona Clínic Liver Cancer Group. Initial response to percutaneous ablation predicts survival in patients with hepatocellular carcinoma. Hepatology 2004;40(6):1352–60.CrossrefGoogle Scholar

  • [14]

    Mack MG, Straub R, Eichler K, Söllner O, Lehnert T, Vogl TJ. Breast cancer metastases in liver: laser-induced interstitial thermotherapy – local tumor control rate and survival data. Radiology 2004;233(2):400–9.Google Scholar

  • [15]

    Walser EM. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with a tumor size of 4 cm or smaller: analysis of factors affecting the achievement of tumor necrosis. J Vasc Interv Radiol 2005;16(11):1427–9.CrossrefGoogle Scholar

  • [16]

    Gangi A, Dietemann JL, Gasser B, Mortazavi R, Brunner P, Mourou MY, Dosch JC, Durckel J, Marescaux J, Roy C. Interstitial laser photocoagulation of osteoid osteomas with use of CT guidance. Radiology 1997;203(3):843–8.Google Scholar

  • [17]

    Witt JD, Hall-Craggs MA, Ripley P, Cobb JP, Bown SG. Interstitial laser photocoagulation for the treatment of osteoid osteoma. J Bone Joint Surg Br 2000;82(8):1125–8.CrossrefGoogle Scholar

  • [18]

    Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 2007;242(1):293–301.Google Scholar

  • [19]

    Law P, Gedroyc WM, Regan L. Magnetic-resonance-guided percutaneous laser ablation of uterine fibroids. Lancet 1999;354(9195):2049–50.Google Scholar

  • [20]

    Døssing H, Bennedbaek FN, Karstrup S, Hegedüs L. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation – initial experience. Radiology 2002;225(1):53–7.CrossrefGoogle Scholar

  • [21]

    Algermissen B, Philipp CM, Müller U, Urban P, Berlien HP. Interstitial thermotherapy (ITT) using Nd:YAG-laser as a new option for the treatment of neuroma. Med Laser Appl 2001;16(2):129–34.CrossrefGoogle Scholar

  • [22]

    Mueller-Lisse UG, Thoma M, Faber S, Heuck AF, Muschter R, Schneede P, Weninger E, Hofstetter AG, Reiser MF. Coagulative interstitial laser-induced thermotherapy of benign prostatic hyperplasia: online imaging with a T2-weighted fast spin-echo MR sequence – experience in six patients. Radiology 1999;210(2):373–9.Google Scholar

  • [23]

    Ronkainen J, Blanco Sequeiros R, Tervonen O. Cost comparison of low-field (0.23 T) MRI-guided laser ablation and surgery in the treatment of osteoid osteoma. Eur Radiol 2006;16(12):2858–65.Google Scholar

  • [24]

    NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Central nervous system cancers. Version 2.2013. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site [Accessed November 22, 2013].

  • [25]

    Ascher PW. Interstitial thermal therapy for brain tumors with Nd:YAG laser under real-time MRI control. Proc SPIE 1990;1200:242–6.Google Scholar

  • [26]

    Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg 1990;54–55:501–5.CrossrefGoogle Scholar

  • [27]

    Bettag M, Ulrich F, Schober R, Sabel M, Kahn T, Hessel S, Bock WJ. Laser-induced interstitial thermotherapy of malignant gliomas. Adv Neurosurg 1992;20:253–7.Google Scholar

  • [28]

    Roux FX, Leriche MB, LUcerna S, Turak B, Devaux B, Chodkiewicz JP. Laser interstitial thermotherapy in stereotactical neurosurgery. Las Med Sci 1992;7(1–4):121–6.CrossrefGoogle Scholar

  • [29]

    Sakai T, Fujishima I, Sugiyama K, Ryu H, Uemura K. Interstitial laserthermia in neurosurgery. J Clin Laser Med Surg 1992;10(1):37–40.Google Scholar

  • [30]

    Kahn T, Bettag M, Ulrich F, Schwarzmaier HJ, Schober R, Fürst G, Mödder U. MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr 1994;18(4):519–32.CrossrefGoogle Scholar

  • [31]

    Kahn T, Schwabe B, Bettag M, Harth T, Ulrich F, Rassek M, Schwarzmaier HJ, Mödder U. Mapping of the cortical motor hand area with functional MR imaging and MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. Work in progress. Radiology 1996;200(1):149–57.Google Scholar

  • [32]

    Kahn T, Harth T, Bettag M, Schwabe B, Ulrich F, Schwarzmaier HJ, Mödder U. Preliminary experience with the application of gadolinium-DTPA before MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. J Magn Reson Imaging 1997;7(1):226–9.CrossrefGoogle Scholar

  • [33]

    Schwabe B, Kahn T, Harth T, Ulrich F, Schwarzmaier HJ. Laser-induced thermal lesions in the human brain: short- and long-term appearance on MRI. J Comput Assist Tomogr 1997;21(5):818–25.CrossrefGoogle Scholar

  • [34]

    Reimer P, Bremer C, Horch C, Morgenroth C, Allkemper T, Schuierer G. MR-monitored LITT as a palliative concept in patients with high grade gliomas: preliminary clinical experience. J Magn Reson Imaging 1998;8(1):240–4.CrossrefGoogle Scholar

  • [35]

    Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK, Lamb SA, Voss B, Davis RL, Wara WM, Larson DA, Phillips TL, Gutin PH. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1998;40(2):287–95.CrossrefGoogle Scholar

  • [36]

    Leonardi MA, Lumenta CB, Gumprecht HK, von Einsiedel GH, Wilhelm T. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR-unit. Minim Invasive Neurosurg 2001;44(1):37–42.Google Scholar

  • [37]

    Leonardi MA, Lumenta CB. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR: clinical expierence. Minim Invasive Neurosurg 2002;45(4):201–7.Google Scholar

  • [38]

    von Tempelhoff W, Toktamis S, Schwarzmaier HJ, Eickmeyer F, Niehoff H, Ulrich F. LITT (Laser induced interstitial thermotherapy) of benign and malignant gliomas in the open MR (0.5 Tesla, GE Signa SP). Med Laser Appl 2002;17(2):170–8.Google Scholar

  • [39]

    Stepp HG, Beck T, Beyer W, Pongratz T, Sroka R, Baumgartner R, Stummer W, Olzowy B, Mehrkens JH, Tonn JC, Reulen HJ. Fluorescence-guided resections and photodynamic therapy for malignant gliomas using 5-aminolevulinic acid. Proc SPIE 2005;5686:547.Google Scholar

  • [40]

    Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Ulrich F. MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging 2005;22(6):799–803.CrossrefGoogle Scholar

  • [41]

    Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Yang Q, Ulrich F. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol 2006;59(2):208–15.CrossrefGoogle Scholar

  • [42]

    Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 2008; 63(1 Suppl 1):ONS21–8; discussion ONS28–9.Google Scholar

  • [43]

    Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, McNichols RJ, Gowda A, Cornu P, Delattre JY. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med 2012;44(5):361–8.CrossrefGoogle Scholar

  • [44]

    Hawasli AH, Ray WZ, Murphy RK, Dacey RG Jr, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for subinsular metastatic adenocarcinoma: technical case report. Neurosurgery 2012;70(2 Suppl Operative):332–7; discussion 338.Google Scholar

  • [45]

    Rahmathulla G, Recinos PF, Valerio JE, Chao S, Barnett GH. Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg 2012;90(3):192–200.CrossrefGoogle Scholar

  • [46]

    Sloan AE, Ahluwalia MS, Valerio-Pascua J, Manjila S, Torchia MG, Jones SE, Sunshine JL, Phillips M, Griswold MA, Clampitt M, Brewer C, Jochum J, McGraw MV, Diorio D, Ditz G, Barnett GH. Results of the NeuroBlate System first-in-humans Phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg 2013;118(6):1202–19.CrossrefGoogle Scholar

  • [47]

    Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery 2013;73(6):1007–17.CrossrefGoogle Scholar

  • [48]

    Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097.CrossrefGoogle Scholar

  • [49]

    Chang SM, Parney IF, McDermott M, Barker FG 2nd, Schmidt MH, Huang W, Laws ER Jr, Lillehei KO, Bernstein M, Brem H, Sloan AE, Berger M; Glioma Outcomes Investigators. Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. J Neurosurg 2003;98(6):1175–81.Google Scholar

  • [50]

    Lee AY, Levine MN. Venous thromboembolism and cancer: risks and outcomes. Circulation 2003;107(23 Suppl 1):I17–21.Google Scholar

  • [51]

    Bloch O, Han SJ, Cha S, Sun MZ, Aghi MK, McDermott MW, Berger MS, Parsa AT. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg 2012;117(6):1032–8.CrossrefGoogle Scholar

  • [52]

    Park JK, Hodges T, Arko L, Shen M, Dello Iacono D, McNabb A, Olsen Bailey N, Kreisl TN, Iwamoto FM, Sul J, Auh S, Park GE, Fine HA, Black PM. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 2010;28(24):3838–43.CrossrefGoogle Scholar

  • [53]

    The Dartmouth Atlas of Health Care – End-of-Life Care. http://www.dartmouthatlas.org/keyissues/issue.aspx?con=2944 [Accessed on December 15, 2013].

  • [54]

    Department of Health and Human Services. Centers for Medicare & Medicaid Services. 42 CFR Parts 412, 413, 415, et al. Medicare Program; Hospital Inpatient Prospective Payment Systems for Acute Care Hospitals and the Long Term Care Hospital Prospective Payment System Changes and FY2011 Rates; Provider Agreements and Supplier Approvals; and Hospital Conditions of Participation for Rehabilitation and Respiratory Care Services; Medicaid Program: Accreditation for Providers of Inpatient Psychiatric Services; Final Rule. Federal Register 2010;75(157):50041–681.Google Scholar

About the article

Corresponding author: Jeffrey D. Voigt, 99 Glenwood Rd., Ridgewood, NJ, 07450, USA, e-mail:


Received: 2013-10-30

Revised: 2014-01-19

Accepted: 2014-01-21

Published Online: 2014-02-24

Published in Print: 2014-04-01


Conflicts of interest statement: Jeff Voigt received an unrestricted grant for the research and writing of the manuscript. He also works as a reimbursement consultant for Monteris Medical. Mark Torchia, PhD, is a founder of Monteris Medical.


Citation Information: Photonics & Lasers in Medicine, Volume 3, Issue 2, Pages 77–93, ISSN (Online) 2193-0643, ISSN (Print) 2193-0635, DOI: https://doi.org/10.1515/plm-2013-0055.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Zulma Tovar-Spinoza and Hoon Choi
Journal of Neurosurgery: Pediatrics, 2016, Volume 17, Number 6, Page 723

Comments (0)

Please log in or register to comment.
Log in