Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Photonics & Lasers in Medicine


CiteScore 2017: 0.37

SCImago Journal Rank (SJR) 2017: 0.173
Source Normalized Impact per Paper (SNIP) 2017: 0.260

Online
ISSN
2193-0643
See all formats and pricing
More options …

A review of optical coherence tomography in breast cancer

Optische Kohärenztomographie bei Brustkrebs – Ein Review

Loretta Scolaro
  • Corresponding author
  • Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert A. McLaughlin
  • Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brendan F. Kennedy
  • Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christobel M. Saunders
  • School of Surgery, Queen Elizabeth II Medical Centre, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David D. Sampson
  • Centre for Microscopy, Characterization and Analysis, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
  • Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-18 | DOI: https://doi.org/10.1515/plm-2014-0013

Abstract

Optical coherence tomography (OCT) is a medical imaging modality that opens up new opportunities for imaging in breast cancer. It provides two- and three-dimensional micro-scale images of tissue structure from bulk tissue, in vivo or freshly excised without labeling or staining, is capable of video-rate acquisition speeds, and is compatible with compact imaging probes. In this paper, the authors briefly describe OCT technology and describe in detail its capabilities for imaging breast cancer. Potential applications identified in current research are discussed, particularly in the assessment of excised breast tumors. It is concluded that OCT shows promise for margin assessment and biopsy guidance but that much more research and validation is required to confirm its level of utility.

Zusammenfassung

Die optische Kohärenztomographie (optical coherence tomography, OCT) ist ein medizinisches Bildgebungsverfahren, das neue Möglichkeiten für die Bildgebung bei Brustkrebs eröffnet. Es liefert zwei- und dreidimensionale Bilder im Mikrometerbereich; erlaubt die Darstellung von Gewebestrukturen großer Gewebevolumen, in vivo oder frisch exzidiert, ohne Markierung oder Färbung; arbeitet fast mit Videoaufnahmegeschwindigkeit und ist mit kompakten Imaging-Sonden kompatibel. Im vorliegenden Übersichtsartikel wird die OCT-Technologie kurz vorgestellt und deren Potential zur Bildgebung von Brustkrebs dargestellt. Mögliche Anwendungen, die derzeit Gegenstand aktueller Forschung sind, werden identifiziert und diskutiert, insbesondere ihr Einsatz zur Beurteilung exzidierter Brusttumoren. Die Autoren kommen zu dem Schluss, dass die OCT sich vielversprechend zeigt für die Tumorrandbestimmung und Biopsie-Führung, aber noch weitere Forschungsarbeit für die Validierung erforderlich ist, um den Grad des Nutzens zu bestätigen.

Keywords: optical imaging; breast cancer; clinical imaging; margin assessment; lymph nodes; needle biopsy

Schlüsselwörter: optische Bildgebung; Brustkrebs; klinische Bildgebung; Tumorrandbestimmung; Lymphknoten; Nadelbiopsie

References

  • [1]

    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. http://globocan.iarc.fr [Accessed on May 6, 2014].

  • [2]

    Australian Institute of Health and Welfare (AIHW). BreastScreen Australia monitoring report 2010–2011. Cancer series no. 77. Cat. no. CAN74. Canberra: AIHW; 2013. http://www.aihw.gov.au/WorkArea/DownloadAsset.aspx?id=60129544880 [Accessed on May 6, 2014].

  • [3]

    Duffy SW, Tabar L, Olsen AH, Vitak B, Allgood PC, Chen TH, Yen AM, Smith RA. Absolute numbers of lives saved and overdiagnosis in breast cancer screening, from a randomized trial and from the Breast Screening Programme in England. J Med Screen 2010;17(1):25–30.CrossrefGoogle Scholar

  • [4]

    Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, Morris E, Pisano E, Schnall M, Sener S, Smith RA, Warner E, Yaffe M, Andrews KS, Russell CA; American Cancer Society Breast Cancer Advisory Group. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007;57(2):75–89.Google Scholar

  • [5]

    Sung JS, Dershaw DD. Breast magnetic resonance imaging for screening high-risk women. Magn Reson Imaging Clin N Am 2013;21(3):509–17.CrossrefGoogle Scholar

  • [6]

    Fallenberg EM, Dromain C, Diekmann F, Engelken F, Krohn M, Singh JM, Ingold-Heppner B, Winzer KJ, Bick U, Renz DM. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size. Eur Radiol 2014;24(1):256–64.CrossrefGoogle Scholar

  • [7]

    Dillon MF, Hill AD, Quinn CM, O’Doherty A, McDermott EW, O’Higgins N. The accuracy of ultrasound, stereotactic, and clinical core biopsies in the diagnosis of breast cancer, with an analysis of false-negative cases. Ann Surg 2005;242(5):701–7.CrossrefGoogle Scholar

  • [8]

    Olsha O, Shemesh D, Carmon M, Sibirsky O, Abu Dalo R, Rivkin L, Ashkenazi I. Resection margins in ultrasound-guided breast-conserving surgery. Ann Surg Oncol 2011;18(2):447–52.CrossrefGoogle Scholar

  • [9]

    Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys 2008;35(6):2443–51.CrossrefGoogle Scholar

  • [10]

    Cerussi A, Hsiang D, Shah N, Mehta R, Durkin A, Butler J, Tromberg BJ. Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. Proc Natl Acad Sci USA 2007;104(10):4014–9.CrossrefGoogle Scholar

  • [11]

    Xia W, Piras D, Singh MK, van Hespen JC, van Leeuwen TG, Steenbergen W, Manohar S. Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography. Biomed Opt Express 2013;4(11):2555–69.Google Scholar

  • [12]

    Hsiung PL, Phatak DR, Chen Y, Aguirre AD, Fujimoto JG, Connolly JL. Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography. Radiology 2007;244(3):865–74.CrossrefGoogle Scholar

  • [13]

    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science 1991;254(5035):1178–81.CrossrefGoogle Scholar

  • [14]

    Drexler W, Fujimoto JG, editors. Optical coherence tomography: technology and applications. London: Springer; 2008.Google Scholar

  • [15]

    Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 2008;27(1):45–88.CrossrefGoogle Scholar

  • [16]

    Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang IK. Optical coherence tomography – 15 years in cardiology. Circ J 2013;77(8):1933–40.CrossrefGoogle Scholar

  • [17]

    Assayag O, Antoine M, Sigal-Zafrani B, Riben M, Harms F, Burcheri A, Grieve K, Dalimier E, Le Conte de Poly B, Boccara C. Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technol Cancer Res Treat 2013;1(1):21–34.Google Scholar

  • [18]

    McLaughlin RA, Quirk BC, Curatolo A, Kirk RW, Scolaro L, Lorenser D, Robbins PD, Wood BA, Saunders CM, Sampson DD. Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J Sel Top Quantum Electron 2012;18(3):1184–91.CrossrefGoogle Scholar

  • [19]

    Nguyen FT, Zysk AM, Chaney EJ, Kotynek JG, Oliphant UJ, Bellafiore FJ, Rowland KM, Johnson PA, Boppart SA. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res 2009;69(22):8790–6.CrossrefGoogle Scholar

  • [20]

    Zhou C, Cohen DW, Wang Y, Lee HC, Mondelblatt AE, Tsai TH, Aguirre AD, Fujimoto JG, Connolly JL. Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res 2010;70(24):10071–9.CrossrefGoogle Scholar

  • [21]

    Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt 2004;9(1):47–74.CrossrefGoogle Scholar

  • [22]

    Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography – principles and applications. Rep Prog Phys 2003;66(2):239–303.CrossrefGoogle Scholar

  • [23]

    Sampson D, Hillman TR. Optical coherence tomography. In: Palumbo G, Pratesi R, editors. Lasers and current optical techniques in biology. Comprehensive series in photochemical and photobiological sciences. Cambridge: The Royal Society of Chemistry; 2004, p. 481–571.Google Scholar

  • [24]

    Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. Optical coherence microscopy in scattering media. Opt Lett 1994;19(8):590–2.CrossrefGoogle Scholar

  • [25]

    Dubois A, Vabre L, Boccara AC, Beaurepaire E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt 2002;41(4):805–12.CrossrefGoogle Scholar

  • [26]

    Li X, Chudoba C, Ko T, Pitris C, Fujimoto JG. Imaging needle for optical coherence tomography. Opt Lett 2000;25(20):1520–2.CrossrefGoogle Scholar

  • [27]

    McLaughlin RA, Yang X, Quirk BC, Lorenser D, Kirk RW, Noble PB, Sampson DD. Static and dynamic imaging of alveoli using optical coherence tomography needle probes. J Appl Physiol 2012;113(6):967–74.CrossrefGoogle Scholar

  • [28]

    Lorenser D, Yang X, Kirk RW, Quirk BC, McLaughlin RA, Sampson DD. Ultrathin side-viewing needle probe for optical coherence tomography. Opt Lett 2011;36(19):3894–6.CrossrefGoogle Scholar

  • [29]

    Scolaro L, Lorenser D, McLaughlin RA, Quirk BC, Kirk RW, Sampson DD. High-sensitivity anastigmatic imaging needle for optical coherence tomography. Opt Lett 2012;37(24): 5247–9.CrossrefGoogle Scholar

  • [30]

    de Boer JF, Milner TE. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Opt 2002;7(3):359–71.CrossrefGoogle Scholar

  • [31]

    Chen ZP, Zhao YH, Srinivas SM, Nelson JS, Prakash N, Frostig RD. Optical Doppler tomography. IEEE J Sel Top Quantum Electron 1999;5(4):1134–42.CrossrefGoogle Scholar

  • [32]

    Leitgeb R, Wojtkowski M, Kowalczyk A, Hitzenberger CK, Sticker M, Fercher AF. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt Lett 2000;25(11):820–2.CrossrefGoogle Scholar

  • [33]

    Kennedy BF, Kennedy KM, Sampson DD. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Sel Top Quantum Electron 2014;20(2):7101217.Google Scholar

  • [34]

    Jung Y, Zhi Z, Wang RK. Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo. J Biomed Opt 2010;15(5):050501.CrossrefGoogle Scholar

  • [35]

    Scolaro L, McLaughlin RA, Klyen BR, Wood BA, Robbins PD, Saunders CM, Jacques SL, Sampson DD. Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography. Biomed Opt Express 2012;3(2):366–79.CrossrefGoogle Scholar

  • [36]

    van der Meer FJ, Faber DJ, Baraznji Sassoon DM, Aalders MC, Pasterkamp G, van Leeuwen TG. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging 2005;24(10):1369–76.CrossrefGoogle Scholar

  • [37]

    Boppart SA, Oldenburg AL, Xu C, Marks DL. Optical probes and techniques for molecular contrast enhancement in coherence imaging. J Biomed Opt 2005;10(4):41208.CrossrefGoogle Scholar

  • [38]

    Hellebust A, Richards-Kortum R. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine 2012;7(3):429–45.CrossrefGoogle Scholar

  • [39]

    Oldenburg A, Toublan F, Suslick K, Wei A, Boppart S. Magnetomotive contrast for in vivo optical coherence tomography. Opt Express 2005;13(17):6597–614.CrossrefGoogle Scholar

  • [40]

    Oldenburg AL, Hansen MN, Ralston TS, Wei A, Boppart SA. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J Mater Chem 2009;19:6407.CrossrefGoogle Scholar

  • [41]

    Zhou C, Tsai TH, Adler DC, Lee HC, Cohen DW, Mondelblatt A, Wang Y, Connolly JL, Fujimoto JG. Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells. Opt Lett 2010;35(5):700–2.CrossrefGoogle Scholar

  • [42]

    Boppart SA, Luo W, Marks DL, Singletary KW. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat 2004;84(2):85–97.CrossrefGoogle Scholar

  • [43]

    McLaughlin RA, Scolaro L, Robbins P, Hamza S, Saunders C, Sampson DD. Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer. Cancer Res 2010;70(7):2579–84.CrossrefGoogle Scholar

  • [44]

    Luo W, Nguyen FT, Zysk AM, Ralston TS, Brockenbrough J, Marks DL, Oldenburg AL, Boppart SA. Optical biopsy of lymph node morphology using optical coherence tomography. Technol Cancer Res Treat 2005;4(5):539–48.CrossrefGoogle Scholar

  • [45]

    John R, Adie SG, Chaney EJ, Marjanovic M, Tangella KV, Boppart SA. Three-dimensional optical coherence tomography for optical biopsy of lymph nodes and assessment of metastatic disease. Ann Surg Oncol 2013;20(11):3685–93.CrossrefGoogle Scholar

  • [46]

    Nguyen FT, Zysk AM, Chaney EJ, Adie SG, Kotynek JG, Oliphant UJ, Bellafiore FJ, Rowland KM, Johnson PA, Boppart SA. Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. IEEE Eng Med Biol Mag 2010;29(2):63–70.CrossrefGoogle Scholar

  • [47]

    Curatolo A, McLaughlin RA, Quirk BC, Kirk RW, Bourke AG, Wood BA, Robbins PD, Saunders CM, Sampson DD. Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins. AJR Am J Roentgenol 2012;199(4):W520–2.CrossrefGoogle Scholar

  • [48]

    McLaughlin RA, Scolaro L, Robbins P, Saunders C, Jacques SL, Sampson DD. Parametric imaging of cancer with optical coherence tomography. J Biomed Opt 2010;15(4):046029.CrossrefGoogle Scholar

  • [49]

    Iftimia NV, Bouma BE, Pitman MB, Goldberg B, Bressner J, Tearney GJ. A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Rev Sci Instrum 2005;76:064301.CrossrefGoogle Scholar

  • [50]

    Bhattacharjee M, Ashok PC, Rao KD, Majumder SK, Verma Y, Gupta PK. Binary tissue classification studies on resected human breast tissues using optical coherence tomography images. J Innov Opt Health Sci 2011;4(1):59–66.CrossrefGoogle Scholar

  • [51]

    Goldberg BD, Iftimia NV, Bressner JE, Pitman MB, Halpern E, Bouma BE, Tearney GJ. Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. J Biomed Opt 2008;13(1):014014.CrossrefGoogle Scholar

  • [52]

    Iftimia NV, Mujat M, Ustun T, Ferguson RD, Danthu V, Hammer DX. Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance. Rev Sci Instrum 2009;80(2):024302.CrossrefGoogle Scholar

  • [53]

    Mujat M, Ferguson RD, Hammer DX, Gittins C, Iftimia N. Automated algorithm for breast tissue differentiation in optical coherence tomography. J Biomed Opt 2009;14(3):034040.CrossrefGoogle Scholar

  • [54]

    Sullivan AC, Hunt JP, Oldenburg AL. Fractal analysis for classification of breast carcinoma in optical coherence tomography. J Biomed Opt 2011;16(6):066010.CrossrefGoogle Scholar

  • [55]

    Zysk AM, Boppart SA. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J Biomed Opt 2006;11(5):054015.CrossrefGoogle Scholar

  • [56]

    Zysk AM, Chaney EJ, Boppart SA. Refractive index of carcinogen-induced rat mammary tumours. Phys Med Biol 2006;51(9):2165–77.CrossrefGoogle Scholar

  • [57]

    Zysk AM, Nguyen FT, Chaney EJ, Kotynek JG, Oliphant UJ, Bellafiore FJ, Johnson PA, Rowland KM, Boppart SA. Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection. Technol Cancer Res Treat 2009;8(5):315–21.CrossrefGoogle Scholar

  • [58]

    Verma Y, Gautam M, Rao KD, Swami MK, Gupta PK. Imaging of human breast tissue using polarization sensitive optical coherence tomography. Laser Phys 2011;21(12):2143–8.CrossrefGoogle Scholar

  • [59]

    Kennedy BF, McLaughlin RA, Kennedy KM, Chin L, Curatolo A, Tien A, Latham B, Saunders CM, Sampson DD. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed Opt Express 2014;5(7): 2113–24.CrossrefGoogle Scholar

  • [60]

    Kennedy BF, Koh SH, McLaughlin RA, Kennedy KM, Munro PR, Sampson DD. Strain estimation in phase-sensitive optical coherence elastography. Biomed Opt Express 2012;3(8):1865–79.CrossrefGoogle Scholar

  • [61]

    Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY, Schoenenberger CA. The nanomechanical signature of breast cancer. Nat Nanotechnol 2012;7(11):757–65.CrossrefGoogle Scholar

  • [62]

    Srivastava A, Verma Y, Rao KD, Gupta PK. Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain 2011;47(1):75–87.CrossrefGoogle Scholar

  • [63]

    Nahas A, Bauer M, Roux S, Boccara AC. 3D static elastography at the micrometer scale using full field OCT. Biomed Opt Express 2013;4(10):2138–49.CrossrefGoogle Scholar

  • [64]

    Kennedy KM, Kennedy BF, McLaughlin RA, Sampson DD. Needle optical coherence elastography for tissue boundary detection. Opt Lett 2012;37(12):2310–2.CrossrefGoogle Scholar

  • [65]

    Kennedy KM, McLaughlin RA, Kennedy BF, Tien A, Latham B, Saunders CM, Sampson DD. Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J Biomed Opt 2013;18(12):121510.CrossrefGoogle Scholar

  • [66]

    Kennedy K, Sampson D, Kennedy B, McLaughlin R, Eshaghian S, Chin L. Optical palpation: Optical coherence tomography-based tactile imaging using a compliant sensor. Opt Lett 2014;10(39):3014–7.CrossrefGoogle Scholar

  • [67]

    Behm EC, Beckmann KR, Dahlstrom JE, Zhang Y, Cho C, Stuart-Harris R, Craft P, Rezo A, Buckingham JM. Surgical margins and risk of locoregional recurrence in invasive breast cancer: an analysis of 10-year data from the Breast Cancer Treatment Quality Assurance Project. Breast 2013;22(5):839–44.Google Scholar

  • [68]

    Krontiras H, Lancaster RB, Urist MM. What is a clear margin in breast conserving cancer surgery? Curr Treat Options Oncol 2014;15(1):79–85.Google Scholar

  • [69]

    Latrive A, Boccara AC. In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe. Biomed Opt Express 2011;2(10):2897–904.CrossrefGoogle Scholar

  • [70]

    The Margin Assessment Machine (MAM). http://www.perimetermed.com/the-solution.html [Accessed on May 7, 2014].

  • [71]

    Light-CT Scanner. http://www.lltechimaging.com/products-applications/products/ [Accessed on May 7, 2014].

  • [72]

    Erickson-Bhatt SJ, Nolan R, Shemonski ND, Adie SG, Putney J, Darga D, McCormick DT, Cittadine A, Marjanovic M, Chaney EJ, Monroy GL, South F, Carney PS, Cradock KA, Liu ZG, Ray PS, Boppart SA. In vivo intra-operative breast tumor margin detection using a portable OCT system with a handheld surgical imaging probe. Proc SPIE 2014;8935:89351C. doi:10.1117/12.2040315.Google Scholar

  • [73]

    The Foresee Imaging System. http://www.diagnosticphotonics.com/product.html [Accessed on May 7, 2014].

  • [74]

    Bassett LW, Mahoney MC, Apple SK. Interventional breast imaging: current procedures and assessing for concordance with pathology. Radiol Clin North Am 2007;45(5):881–94, vii.CrossrefGoogle Scholar

  • [75]

    Berg WA. Image-guided breast biopsy and management of high-risk lesions. Radiol Clin North Am 2004;42(5):935–46, vii.CrossrefGoogle Scholar

  • [76]

    Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, Costa A, de Cicco C, Geraghty JG, Luini A, Sacchini V, Veronesi P. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 1997;349(9069):1864–7.CrossrefGoogle Scholar

  • [77]

    Wilke LG, McCall LM, Posther KE, Whitworth PW, Reintgen DS, Leitch AM, Gabram SG, Lucci A, Cox CE, Hunt KK, Herndon 2nd JE, Giuliano AE. Surgical complications associated with sentinel lymph node biopsy: results from a prospective international cooperative group trial. Ann Surg Oncol 2006;13(4):491–500.Google Scholar

  • [78]

    Kim T, Giuliano AE, Lyman GH. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 2006;106(1):4–16.CrossrefGoogle Scholar

  • [79]

    Savastru D, Chang EW, Miclos S, Pitman MB, Patel A, Iftimia N. Detection of breast surgical margins with optical coherence tomography imaging: a concept evaluation study. J Biomed Opt 2014;19(5):56001.CrossrefGoogle Scholar

  • [80]

    Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 2009;15(10):1219–23.CrossrefGoogle Scholar

About the article

Corresponding author: Loretta Scolaro, Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia, e-mail:


Received: 2014-04-29

Revised: 2014-05-21

Accepted: 2014-05-26

Published Online: 2014-06-18

Published in Print: 2014-08-01


Citation Information: Photonics & Lasers in Medicine, Volume 3, Issue 3, Pages 225–240, ISSN (Online) 2193-0643, ISSN (Print) 2193-0635, DOI: https://doi.org/10.1515/plm-2014-0013.

Export Citation

©2014 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Shulian Wu, Yudian Huang, Qinggong Tang, Zhifang Li, Hannah Horng, Jiatian Li, Zaihua Wu, Yu Chen, and Hui Li
Biomedical Optics Express, 2018, Volume 9, Number 3, Page 1375
[2]
Wes M. Allen, Kelsey M. Kennedy, Qi Fang, Lixin Chin, Andrea Curatolo, Lucinda Watts, Renate Zilkens, Synn Lynn Chin, Benjamin F. Dessauvagie, Bruce Latham, Christobel M. Saunders, and Brendan F. Kennedy
Biomedical Optics Express, 2018, Volume 9, Number 3, Page 1082
[3]
Martin Villiger, Dirk Lorenser, Robert A. McLaughlin, Bryden C. Quirk, Rodney W. Kirk, Brett E. Bouma, and David D. Sampson
Scientific Reports, 2016, Volume 6, Number 1
[4]
Xinwen Yao, Yu Gan, Ernest Chang, Hanina Hibshoosh, Sheldon Feldman, and Christine Hendon
Lasers in Surgery and Medicine, 2017, Volume 49, Number 3, Page 258
[5]
Kirill V. Larin and David D. Sampson
Biomedical Optics Express, 2017, Volume 8, Number 2, Page 1172
[6]
Kate Grieve, Karima Mouslim, Osnath Assayag, Eugénie Dalimier, Fabrice Harms, Alexis Bruhat, Claude Boccara, and Martine Antoine
Technology in Cancer Research & Treatment, 2016, Volume 15, Number 2, Page 266
[7]
Kelsey M. Kennedy, Lixin Chin, Philip Wijesinghe, Robert A. McLaughlin, Bruce Latham, David D. Sampson, Christobel M. Saunders, and Brendan F. Kennedy
BMC Cancer, 2016, Volume 16, Number 1
[8]
Wes M. Allen, Lixin Chin, Philip Wijesinghe, Rodney W. Kirk, Bruce Latham, David D. Sampson, Christobel M. Saunders, and Brendan F. Kennedy
Biomedical Optics Express, 2016, Volume 7, Number 10, Page 4139

Comments (0)

Please log in or register to comment.
Log in