Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Photonics & Lasers in Medicine


SCImago Journal Rank (SJR) 2018: 0.162
Source Normalized Impact per Paper (SNIP) 2018: 0.346

More options …

Novel methods for elasticity characterization using optical coherence tomography: Brief review and future prospects

Neue Verfahren zur Charakterisierung der Elastizität unter Nutzung der optischen Kohärenztomographie: Kurzes Review und Zukunftsaussichten

Lev A. Matveev
  • Corresponding author
  • Institute of Applied Physics RAS, 46 Uljanova Str., Nizhny Novgorod 603950, Russia; Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia; and Nizhny Novgorod State University, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Y. Zaitsev
  • Institute of Applied Physics RAS, 46 Uljanova Str., Nizhny Novgorod 603950, Russia; Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia; and Nizhny Novgorod State University, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksander L. Matveev
  • Institute of Applied Physics RAS, 46 Uljanova Str., Nizhni Novgorod 603950, Russia
  • Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grigory V. Gelikonov
  • Institute of Applied Physics RAS, 46 Uljanova Str., Nizhny Novgorod 603950, Russia; Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia; and Nizhny Novgorod State University, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valentin M. Gelikonov
  • Institute of Applied Physics RAS, 46 Uljanova Str., Nizhny Novgorod 603950, Russia; Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia; and Nizhny Novgorod State University, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alex Vitkin
  • Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia
  • Department of Medical Biophysics, University of Toronto, 610 University Ave., Toronto, Ontario M5G 2M9, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-03 | DOI: https://doi.org/10.1515/plm-2014-0023

Abstract

In this paper, a brief overview of several recently proposed approaches to elastographic characterization of biological tissues using optical coherence tomography is presented. A common feature of these “unconventional” approaches is that unlike most others, they do not rely on a two-step process of first reconstructing the particle displacements and then performing its error-prone differentiation in order to determine the local strains. Further, several variants of these new approaches were proposed and demonstrated essentially independently and are based on significantly different principles. Despite the seeming differences, these techniques open up interesting prospects not only for independent usage, but also for combined implementation to provide a multifunctional investigation of elasticity of biological tissues and their rheological properties in a wider sense.

Zusammenfassung

In diesem Beitrag wird ein kurzer Überblick über einige kürzlich vorgestellte Ansätze zur elastographischen Charakterisierung von biologischen Geweben mittels optischer Kohärenztomographie gegeben. Diesen “unkonventionellen” Ansätzen ist gemeinsam, dass sie nicht, so wie die meisten anderen, auf einem zweistufigen Prozess (zuerst Rekonstruktion der Partikelverschiebungen, dann Durchführung ihrer fehleranfälligen Differenzierung), basieren, um die lokalen Belastungen zu bestimmen. Es wurden mehrere Varianten dieser neuen Ansätze verfolgt, die auf deutlich unterschiedlichen Prinzipien beruhen und im Wesentlichen unabhängig voneinander demonstriert wurden. Trotz der scheinbaren Unterschiede, eröffnen diese Techniken interessante Perspektiven – nicht nur für eine unabhängige Nutzung sondern auch für die kombinierte Umsetzung – um eine multifunktionale Untersuchung der Elastizität von biologischen Geweben und ihrer rheologischen Eigenschaften in einem weiteren Sinne zu ermöglichen.

Keywords: optical coherence tomography; optical elastography; tissue mechanical properties characterization; speckle decorrelation; tissue relaxation rate; optical palpation

Schlüsselwörter: optische Kohärenztomographie; optische Elastographie; Charakterisierung der mechanischen Gewebeeigenschaften; Speckle-Dekorrelation; Geweberelaxationsrate; optische Abtastung

References

  • [1]

    Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005;8(3):175–6.CrossrefGoogle Scholar

  • [2]

    Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography – An emerging branch of medical imaging. Curr Med Imaging Rev 2011;7(4):255–82.CrossrefGoogle Scholar

  • [3]

    Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 2011;56(1):R1–R29.CrossrefGoogle Scholar

  • [4]

    Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express 1998;3(6):199–211.CrossrefGoogle Scholar

  • [5]

    Rogowska J, Patel NA, Fujimoto JG, Brezinski ME. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 2004;90(5):556–62.CrossrefGoogle Scholar

  • [6]

    Rogowska J, Patel N, Plummer S, Brezinski ME. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. Br J Radiol 2006;79(945):707–11.CrossrefGoogle Scholar

  • [7]

    Khalil AS, Chan RC, Chau AH, Bouma BE, Mofrad MR. Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue. Ann Biomed Eng 2005;33(11):1631–9.CrossrefGoogle Scholar

  • [8]

    Wang RK, Kirkpatrick S, Hinds M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl Phys Lett 2007;90(16):164105.Google Scholar

  • [9]

    Kennedy BF, Hillman TR, McLaughlin RA, Quirk BC, Sampson DD. In vivo dynamic optical coherence elastography using a ring actuator. Opt Express 2009;17(24):21762–72.CrossrefGoogle Scholar

  • [10]

    Kennedy BF, Liang X, Adie SG, Gerstmann DK, Quirk BC, Boppart SA, Sampson DD. In vivo three-dimensional optical coherence elastography. Opt Express 2011;19(7):6623–34.CrossrefGoogle Scholar

  • [11]

    Wang S, Li J, Manapuram RK, Menodiado FM, Ingram DR, Twa MD, Lazar AJ, Lev DC, Pollock RE, Larin KV. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system. Opt Lett 2012;37(24):5184–6.CrossrefGoogle Scholar

  • [12]

    van Soest G, Mastik F, de Jong N, van der Steen AF. Robust intravascular optical coherence elastography by line correlations. Phys Med Biol 2007;52(9):2445–58.CrossrefGoogle Scholar

  • [13]

    Nahas A, Bauer M, Roux S, Boccara AC. 3D static elastography at the micrometer scale using full field OCT. Biomed Opt Express 2013;4(10):2138–49.CrossrefGoogle Scholar

  • [14]

    Sun C, Standish B, Vuong B, Wen XY, Yang V. Digital image correlation-based optical coherence elastography. J Biomed Opt 2013;18(12):121515.Google Scholar

  • [15]

    Kennedy KM, Ford C, Kennedy BF, Bush MB, Sampson DD. Analysis of mechanical contrast in optical coherence elastography. J Biomed Opt 2013;18(12):121508.Google Scholar

  • [16]

    Kennedy KM, McLaughlin RA, Kennedy BF, Tien A, Latham B, Saunders CM, Sampson DD. Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J Biomed Opt 2013;18(12):121510.Google Scholar

  • [17]

    Nadkarni SK. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture. J Biomed Opt 2013;18(12):121507.Google Scholar

  • [18]

    Liang X, Crecea V, Boppart SA. Dynamic optical coherence elastography: a review. J Innov Opt Health Sci 2010;3(4):221–3.CrossrefGoogle Scholar

  • [19]

    Sun C, Standish B, Yang VX. Optical coherence elastography: current status and future applications. J Biomed Opt 2011;16(4):043001.Google Scholar

  • [20]

    Kennedy BF, Kennedy KM, Sampson DD. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Sel Topics Quantum Electron 2014;20(2):1–17.CrossrefGoogle Scholar

  • [21]

    Razani M, Mariampillai A, Sun C, Luk TW, Yang VX, Kolios MC. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Biomed Opt Express 2012;3(5):972–80.CrossrefGoogle Scholar

  • [22]

    Manapuram RK, Aglyamov SR, Monediado FM, Mashiatulla M, Li J, Emelianov SY, Larin KV. In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J Biomed Opt 2012;17(10):100501.Google Scholar

  • [23]

    Li J, Wang S, Manapuram RK, Singh M, Menodiado FM, Aglyamov S, Emelianov S, Twa MD, Larin KV. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo. J Biomed Opt 2013;18(12):121503.Google Scholar

  • [24]

    Song S, Huang Z, Nguyen TM, Wong EY, Arnal B, O’Donnell M, Wang RK. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. J Biomed Opt 2013;18(12):121509.Google Scholar

  • [25]

    Nahas A, Tanter M, Nguyen TM, Chassot JM, Fink M, Claude Boccara A. From supersonic shear wave imaging to full-field optical coherence shear wave elastography. J Biomed Opt 2013;18(12):121514.Google Scholar

  • [26]

    Nguyen TM, Song S, Arnal B, Wong EY, Huang Z, Wang RK, O’Donnell M. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography. J Biomed Opt 2014;19(1):16013.Google Scholar

  • [27]

    Razani M, Luk TW, Mariampillai A, Siegler P, Kiehl TR, Kolios MC, Yang VX. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples. Biomed Opt Express 2014;5(3):895–906.CrossrefGoogle Scholar

  • [28]

    Wang S, Larin KV. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett 2014;39(1):41–4.CrossrefGoogle Scholar

  • [29]

    Wang S, Lopez AL, Morikawa Y, Tao G, Li J, Larina I, Martin JF, Larin KV. Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography. Biomed Opt Express 2014;5(7):1980–92.CrossrefGoogle Scholar

  • [30]

    Kato Y, Wada Y, Mizuno Y, Nakamura K. Measurement of elastic wave propagation velocity near tissue surface by optical coherence tomography and laser Doppler velocimetry. Jpn J Appl Phys 2014;53(7S):07KF05.CrossrefGoogle Scholar

  • [31]

    Song S, Huang Z, Wang RK. Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomogrqaphy: Motion artifact and its compensation. J Biomed Opt 2013;18(12):121505.Google Scholar

  • [32]

    Yun SH, Tearney G, de Boer J, Bouma B. Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt Express 2004;12(13):2977–98.CrossrefGoogle Scholar

  • [33]

    O’Hara KE, Schmoll T, Vass C, Leitgeb RA. Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography. J Biomed Opt 2013;18(12):121506.Google Scholar

  • [34]

    Zaitsev VY, Matveev LA, Matveyev AL, Gelikonov GV, Gelikonov VM. Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability. J Biomed Opt 2014;19(2):21107.CrossrefGoogle Scholar

  • [35]

    Fu J, Pierron F, Ruiz PD. Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation. J Biomed Opt 2013;18(12):121512.Google Scholar

  • [36]

    Kennedy BF, Hillman TR, Curatolo A, Sampson DD. Speckle reduction in optical coherence tomography by strain compounding. Opt Lett 2010;35(14):2445–7.CrossrefGoogle Scholar

  • [37]

    Kennedy BF, Curatolo A, Hillman TR, Saunders CM, Sampson DD. Speckle reduction in optical coherence tomography images using tissue viscoelasticity. J Biomed Opt 2011;16(2):020506.CrossrefGoogle Scholar

  • [38]

    Curatolo A, Kennedy BF, Sampson DD, Hillman TR. Speckle in optical coherence tomography. In: Wang RK, Tuchin VV, editors. Advanced biophotonics: tissue optical sectioning. Boca Raton: Taylor & Francis; 2014, p. 211–78.Google Scholar

  • [39]

    Kennedy BF, Koh SH, McLaughlin RA, Kennedy KM, Munro PR, Sampson DD. Strain estimation in phase-sensitive optical coherence elastography. Biomed Opt Express 2012;3(8):1865–79.CrossrefGoogle Scholar

  • [40]

    Zaitsev VY, Gelikonov VM, Matveev LA, Gelikonov GV, Matveyev AL, Shilyagin PA, Vitkin IA. Recent trends in multimodal optical coherence tomography. I. Polarization-sensitive OCT and conventional approaches to OCT elastography. Radiophys Quantum El 2014;57(1):52–66.CrossrefGoogle Scholar

  • [41]

    Li J, Wang S, Singh M, Aglyamov S, Emelianov S, Twa MD, Larin KV. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo. Laser Phys Lett 2014;11(6):065601.Google Scholar

  • [42]

    Wang S, Larin KV, Li J, Vantipalli S, Manapuram RK, Aglyamov S, Emelianov S, Twa MD. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity. Laser Phys Lett 2013;10(7):075605.Google Scholar

  • [43]

    Kennedy KM, Es’haghian S, Chin L, McLaughlin RA, Sampson DD, Kennedy BF. Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor. Opt Lett 2014;39(10):3014–7.CrossrefGoogle Scholar

  • [44]

    Zaitsev VY, Matveev LA, Gelikonov GV, Matveyev AL, Gelikonov VM. A correlation-stability approach to elasticity mapping in optical coherence tomography. Laser Phys Lett 2013;10(6): 065601.Google Scholar

  • [45]

    Zaitsev VY, Vitkin IA, Matveev LA, Gelikonov VM, Matveyev AL, Gelikonov GV. Recent trends in multimodal optical coherence tomography. II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophys Quantum El 2014;57(3):231–50.Google Scholar

  • [46]

    Matveev LA, Zaitsev VY, Matveyev AL, Gelikonov GV, Gelikonov VM. Correlation-stability approach in optical microelastography of tissues. Proc SPIE 2013;8699:869904.Google Scholar

  • [47]

    Zaitsev VY, Matveev LA, Matveyev AL, Gelikonov GV, Gelikonov VM. Correlation-stability elastography in OCT: algorithm and in vivo demonstrations. Proc SPIE 2013;8802:880208.Google Scholar

  • [48]

    Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT). Biomed Opt Express 2011;2(5):1184–93.CrossrefGoogle Scholar

  • [49]

    Jonathan E, Enfield J, Leahy MJ. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J Biophotonics 2011;4(9):583–7.Google Scholar

  • [50]

    Subhash HM, Leahy MJ. Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography. J Biomed Opt 2014;19(2):21103.CrossrefGoogle Scholar

  • [51]

    Choi WJ, Reif R, Yousefi S, Wang RK. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask. J Biomed Opt 2014;19(3):36010.Google Scholar

  • [52]

    Zaitsev VY, Matveev LA, Matveyev AL, Gelikonov GV, Gelikonov VM. Towards free-hand implementation of OCT elastography: displacement-based approaches versus correlation-stability ones. Proc SPIE 2014;9129:91290J.Google Scholar

  • [53]

    Matveev LA, Zaitsev VY, Matveyev AL, Gelikonov GV, Gelikonov VM. Combining the correlation-stability approach to OCT elastography with the speckle-variance evaluation for quantifying the stiffness differences. Proc SPIE 2014;9129:91290I.Google Scholar

  • [54]

    Matveev LA, Zaitsev, VY, Matveyev AL, Gelikonov GV, Gelikonov VM. To the problem of stiffness-contrast quantification in the correlation-stability approach to OCT elastography. Proc SPIE 2014;9031:903102.Google Scholar

  • [55]

    Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MK, Jiang J, Cable A, Wilson BC, Vitkin IA, Yang VX. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 2008;33(13):1530–2.CrossrefGoogle Scholar

  • [56]

    Mariampillai A, Leung MK, Jarvi M, Standish BA, Lee K, Wilson BC, Vitkin A, Yang VX. Optimized speckle variance OCT imaging of microvasculature. Opt Lett 2010;35(8):1257–9.CrossrefGoogle Scholar

  • [57]

    Conroy L, DaCosta RS, Vitkin IA. Quantifying tissue microvasculature with speckle variance optical coherence tomography. Opt Lett 2012;37(15):3180–2.CrossrefGoogle Scholar

  • [58]

    Lee KK, Mariampillai A, Yu JX, Cadotte DW, Wilson BC, Standish BA, Yang VX. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit. Biomed Opt Express 2012;3(7):1557–64.CrossrefGoogle Scholar

  • [59]

    Davoudi B, Morrison M, Bizheva K, Yang VX, Dinniwell R, Levin W, Vitkin IA. Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients. J Biomed Opt 2013;18(7):76008.Google Scholar

  • [60]

    Sudheendran N, Syed SH, Dickinson ME, Larina IV, Larin KV. Speckle variance OCT imaging of the vasculature in live mammalian embryos. Laser Phys Lett 2011;8(3):247–52.CrossrefGoogle Scholar

  • [61]

    Zaitsev VY, Matveev LA, Matveyev AL, Gelikonov GV, Gelikonov VM. A model for simulating speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT. Laser Phys Lett 2014;11(10):105601.Google Scholar

About the article

Corresponding author: Lev A. Matveev, Institute of Applied Physics RAS, 46 Uljanova Str., Nizhny Novgorod 603950, Russia; Nizhny Novgorod State Medical Academy, 10/1 Minin Square, Nizhny Novgorod 603005, Russia; and Nizhny Novgorod State University, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia, e-mail:


Received: 2014-06-14

Revised: 2014-08-06

Accepted: 2014-08-08

Published Online: 2014-09-03

Published in Print: 2014-11-01


Conflict of interest statement: The authors declare that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.


Citation Information: Photonics & Lasers in Medicine, Volume 3, Issue 4, Pages 295–309, ISSN (Online) 2193-0643, ISSN (Print) 2193-0635, DOI: https://doi.org/10.1515/plm-2014-0023.

Export Citation

©2014 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Shaghayegh Es’haghian, Kelsey M. Kennedy, Peijun Gong, David D. Sampson, Robert A. McLaughlin, and Brendan F. Kennedy
Journal of Biomedical Optics, 2015, Volume 20, Number 1, Page 016013
[2]
Vladimir Y. Zaitsev, Alexandr L. Matveyev, Lev A. Matveev, Ekaterina V. Gubarkova, Alexandr A. Sovetsky, Marina A. Sirotkina, Grigory V. Gelikonov, Elena V. Zagaynova, Natalia D. Gladkova, and Alex Vitkin
Journal of Innovative Optical Health Sciences, 2017, Volume 10, Number 06, Page 1742006

Comments (0)

Please log in or register to comment.
Log in