Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Photonics & Lasers in Medicine


CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2016: 0.230
Source Normalized Impact per Paper (SNIP) 2016: 0.291

Online
ISSN
2193-0643
See all formats and pricing
More options …

Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging

Echtzeit-Clutter-Reduktion bei kombinierter epi-optoakustischer und Ultraschall-Bildgebung

Michael Jaeger / Kujtim Gashi
  • Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
  • Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hidayet Günhan Akarçay / Gerrit Held / Sara Peeters / Tigran Petrosyan / Stefan Preisser / Michael Gruenig / Martin Frenz
Published Online: 2014-09-03 | DOI: https://doi.org/10.1515/plm-2014-0028

Abstract

Flexible imaging of the human body, a requirement for broad clinical application, is obtained by direct integration of optoacoustic (OA) imaging with echo ultrasound (US) in a multimodal epi-illumination system. Up to date, successful deep epi-OA imaging is difficult to achieve owing to clutter. Clutter signals arise from optical absorption in the region of tissue irradiation and strongly reduce contrast and imaging depth. Recently, we developed a displacement-compensated averaging (DCA) technique for clutter reduction based on the clutter decorrelation that occurs when palpating the tissue. To gain first clinical experience on the practical value of DCA, we implemented this technique in a combined clinical OA and US imaging system. Our experience with freehand scanning of human volunteers reveals that real-time feedback on the clutter-reduction outcome is a key factor for achieving superior contrast and imaging depth.

Zusammenfassung

Die direkte Integration der optoakustischen Beleuchtung in einen Ultraschallkopf zu einem multimodalen bildgebenden Diagnosegerät erlaubt eine flexible Bildgebung des menschlichen Körpers. Diese Flexibilität stellt eine wichtige Voraussetzung für eine breite klinische Anwendung dar. Infolge von Clutter ist es bis heute jedoch schwierig, optoakustische Bilder aus großer Tiefe im Gewebe zu gewinnen. Clutter, der durch optische Absorption im Bereich der Lichteinstrahlung im Gewebe entsteht, führt zu einer starken Verringerung des Kontrastes und zu einer deutlichen Reduktion der Bildtiefe. In den letzten Jahren entwickelten wir eine Methode, das sogenannte „displacement compensated averaging“ (DCA), um diesen Clutter zu reduzieren. Dabei wird das Gewebe mechanisch leicht verschoben, was bei der Mittelung der einzelnen Bilder zu einer Dekorrelation des Clutters führt. Um erste praktische Erfahrungen mit DCA zu gewinnen, integrierten wir dieses Verfahren in ein klinisches optoakustisches und Ultraschall-Gerät. Unsere Messungen im Freihand-Scan-Modus an Probanden zeigte, dass eine Clutterreduktion in Echtzeit einen Schlüsselfaktor für die Verbesserung des Kontrastes und der Bildtiefe darstellt.

Keywords: photoacoustics; diagnostic imaging; contrast; imaging depth

Schlüsselwörter: Photoakustik; diagnostische Bildgebung; Kontrast; Bildtiefe

References

  • [1]

    Sigrist MW. Laser generation of acoustic waves in liquids and gases. J Appl Phys 1986;60:R83–121.CrossrefGoogle Scholar

  • [2]

    Oraevsky AA, Jacques SL, Tittel FK. Determination of tissue optical properties by time-resolved detection of laser-induced stress waves. Proc SPIE 1993;1882:86–101.Google Scholar

  • [3]

    Oraevsky AA, Jacques SL, Esenaliev RO, Tittel FK. Laser-based optoacoustic imaging in biological tissues. Proc SPIE 1994;2134A:122–8.Google Scholar

  • [4]

    Kruger RA, Liu P. Photoacoustic ultrasound: Theory and experimental results. Proc SPIE 1994;2134A:114–21.Google Scholar

  • [5]

    Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012;335(6075):1458–62.Web of ScienceGoogle Scholar

  • [6]

    Cox B, Laufer JG, Arridge SR, Beard PC. Quantitative spectroscopic photoacoustic imaging: a review. J Biomed Opt 2012;17(6):061202.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Beard P. Biomedical photoacoustic imaging. Int Focus 2011;1(4):602–31.CrossrefGoogle Scholar

  • [8]

    Köstli KP, Frenz M, Weber HP, Paltauf G, Schmidt-Kloiber H. Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction. Appl Opt 2001;40(22):3800–9.CrossrefGoogle Scholar

  • [9]

    Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum 2006;77:41101. http://labs.seas.wustl.edu/bme/wang/epub/2006mxu-pa-review.pdf [Accessed on July 29, 2014].

  • [10]

    Hu S, Wang LV. Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt 2010;15(1):011101.Web of ScienceCrossrefGoogle Scholar

  • [11]

    Niederhauser JJ, Jaeger M, Frenz M. Comparison of laser-induced and classical ultrasound. Proc SPIE 2003;4960: 118–23.Google Scholar

  • [12]

    Niederhauser JJ, Jaeger M, Lemor R, Weber P, Frenz M. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans Med Imaging 2005;24(4):436–40.CrossrefGoogle Scholar

  • [13]

    Kolkman RG, Brands PJ, Steenbergen W, van Leeuwen TG. Real-time in vivo photoacoustic and ultrasound imaging. J Biomed Opt 2008;13(5):050510.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    Aguirre A, Guo P, Gamelin J, Yan S, Sanders MM, Brewer M, Zhu Q. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. J Biomed Opt 2009;14(5):054014.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Jaeger M, Harris-Birtill D, Gertsch A, O’Flynn E, Bamber J. Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo. J Biomed Opt 2012;17(6):066007.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    Fronheiser MP, Ermilov SA, Brecht HP, Conjusteau A, Su R, Mehta K, Oraevsky AA. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J Biomed Opt 2010;15(2):021305.Web of ScienceCrossrefGoogle Scholar

  • [17]

    Zalev J, Clingman B, Herzog D, Miller T, Stavros AT, Oraevsky A, Kist K, Dornbluth NC, Otto P. Opto-acoustic breast imaging with co-registered ultrasound. Proc SPIE 2014;9038:90381J.Google Scholar

  • [18]

    Wurzinger G, Nuster R, Schmitner N, Gratt S, Meyer D, Paltauf G. Simultaneous three-dimensional photoacoustic and laser-ultrasound tomography. Biomed Opt Express 2013;4(8):1380–9.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    Nuster R, Schmitner N, Wurzinger G, Gratt S, Salvenmoser W, Meyer D, Paltauf G. Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection. J Biophotonics 2013;6(6–7):549–59.Web of ScienceCrossrefGoogle Scholar

  • [20]

    Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, Miller T, Oraevsky AA. Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 2009;14(2):024007.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Bauer DR, Olafsson R, Montilla LG, Witte RS. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber. J Biomed Opt 2011;16(2):026012.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Yao J, Maslov KI, Zhang Y, Xia Y, Wang LV. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt 2011;16(7):076003.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 2006;24(7):848–51.CrossrefGoogle Scholar

  • [24]

    Khokhlova TD, Pelivanov IM, Kozhushko VV, Zharinov AN, Solomatin VS, Karabutov AA. Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics. Appl Opt 2007;46(2):262–72.CrossrefGoogle Scholar

  • [25]

    Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG. The twente photoacoustic mammoscope: system overview and performance. Phys Med Biol 2005;50(11): 2543–57.CrossrefGoogle Scholar

  • [26]

    Manohar S, Vaartjes SE, van Hespen JC, Klaase JM, van den Engh FM, Steenbergen W, van Leeuwen TG. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 2007;15(19): 12277–85.CrossrefGoogle Scholar

  • [27]

    Jaeger M, Frenz M, Schweizer D. Iterative reconstruction algorithm for reduction of echo background in optoacoustic images. Proc SPIE 2008;6856:68561C.Google Scholar

  • [28]

    Jaeger M, Siegenthaler L, Kitz M, Frenz M. Reduction of background in optoacoustic image sequences obtained under tissue deformation. J Biomed Opt 2009;14(5):054011.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Jaeger M, Preisser S, Kitz M, Ferrara D, Senegas S, Schweizer D, Frenz M. Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies. Phys Med Biol 2011;56(18):5889–901.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Jaeger M, Schüpbach S, Gertsch A, Kitz M, Frenz M. Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation. Inverse Problems 2007;23:S51–63. http://iopscience.iop.org/0266-5611/23/6/S05/pdf/0266-5611_23_6_S05.pdf [Accessed on July 29, 2014].Crossref

  • [31]

    O’Donnell M, Skovoroda AR, Shapo BM, Emelianov SY. Internal displacement and imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 1994;41(3):314–25.CrossrefGoogle Scholar

  • [32]

    Frenz M, Jaeger M. Optimization of tissue irradiation in optoacoustic imaging using a linear transducer: theory and experiments. Proc SPIE 2008;6856:68561Y.Google Scholar

  • [33]

    Held G, Preisser S, Peeters S, Frenz M, Jaeger M. Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers. Biomed Opt Express 2014. in press.CrossrefGoogle Scholar

About the article

Corresponding author: Martin Frenz, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland, e-mail:


Received: 2014-06-27

Revised: 2014-08-05

Accepted: 2014-08-08

Published Online: 2014-09-03

Published in Print: 2014-11-01


Funding Swiss National Science Foundation “Ambizione” (Grant/Award Number: ‘No. PZ00P3_142585’); European Community’s Seventh Framework Programme (Grant/Award Number: ‘No. 318067, FULLPHASE’); Swiss National Science Foundation (Grant/Award Number: ‘No. 205320-144443’).


Citation Information: Photonics & Lasers in Medicine, ISSN (Online) 2193-0643, ISSN (Print) 2193-0635, DOI: https://doi.org/10.1515/plm-2014-0028.

Export Citation

©2014 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Michael Jaeger, Elise Robinson, H Günhan Akarçay, and Martin Frenz
Physics in Medicine and Biology, 2015, Volume 60, Number 11, Page 4497

Comments (0)

Please log in or register to comment.
Log in