Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino

9 Issues per year


IMPACT FACTOR 2016: 0.658

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.251
Source Normalized Impact per Paper (SNIP) 2015: 0.462

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 33, Issue 4

Issues

Thermal degradation kinetics and mechanism of epoxidized natural rubber

Canzhong He
  • Institute for Frontier Materials, Deakin University, Waurn Ponds Vic 3216, Australia
  • Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
  • College of Agriculture, Hainan University, Haikou 570228, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yueqiang Wang
  • Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yongyue Luo
  • Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lingxue Kong / Zheng Peng
  • Corresponding author
  • Institute for Frontier Materials, Deakin University, Waurn Ponds Vic 3216, Australia
  • Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-15 | DOI: https://doi.org/10.1515/polyeng-2013-0040

Abstract

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (Eα), activation entropy (ΔH) and activation Gibbs energy (ΔG) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.

Keywords: epoxidized natural rubber; kinetics; mechanism; thermal degradation

References

  • [1]

    Puskas JE, Gautriaud E, Deffieux A, Kennedy JP. Prog. Polym. Sci. 2006, 31, 533–548.Google Scholar

  • [2]

    Ng SC, Gan LH. Eur. Polym. J. 1981, 17, 1073–1077.Google Scholar

  • [3]

    Cook S. Mater. World 2009, 17, 30–32.Google Scholar

  • [4]

    Ibrahim A, Dahlan M. Prog. Polym. Sci. 1998, 23, 665–706.Google Scholar

  • [5]

    Baker CSL, Gelling IR, Wallace IR. Elastomerics 1989, 121, 25–27.Google Scholar

  • [6]

    Gelling IR. J. Nat. Rubber Res. 1991, 6, 184–205.Google Scholar

  • [7]

    Gelling IR. Rubber Chem. Technol. 1985, 58, 86–97.Google Scholar

  • [8]

    Bac NV, Terlemezyan L, Mihailov M. J. Appl. Polym. Sci. 1993, 50, 845–849.Google Scholar

  • [9]

    Roy S, Gupta BR, Chaki TK. Kautsch. Gummi Kunstst. 1993, 46, 293–296.Google Scholar

  • [10]

    Hashim AS, Kawabata N, Kohjiya S. J. Sol-Gel Sci. Technol. 1995, 5, 211–218.CrossrefGoogle Scholar

  • [11]

    Manna AK, De PP, Tripathy DK, De SK, Peiffer DG. J. Appl. Polym. Sci. 1999, 74, 389–398.Google Scholar

  • [12]

    Varghese S, Karger-Kocsis J, Gatos KG. Polymer 2003, 44, 3977–3983.Google Scholar

  • [13]

    Gan SN, Abdul Hamid Z. Polymer 1997, 38, 1953–1956.Google Scholar

  • [14]

    Akiba M, Hashim AS. Prog. Polym. Sci. 1997, 22, 475–521.Google Scholar

  • [15]

    Hirayama T, Wada T, Wakabayashi N, Ikeda K, Keiji I, Noboru W, Takao W, Tomoaki H. Rubber composition for tread, side wall and clinch used in manufacture of tire, comprises rubber ingredient comprising natural rubber and epoxidized natural rubber, silica and natural wax. Sumitomo Rubber Ind Ltd, 2009.Google Scholar

  • [16]

    Somboonsub B, Srisuwan S, Invernale MA, Thongyai S, Praserthdam P, Scola DA, Sotzing GA. Polymer 2010, 51, 4472–4476.Google Scholar

  • [17]

    Sydlik SA, Chen Z, Swager TM. Macromolecules 2011, 44, 976–980.Google Scholar

  • [18]

    Cho S, Seo JH, Park SH, Beaupré S, Leclerc M, Heeger AJ. Adv. Mater. 2010, 22, 1253–1257.PubMedGoogle Scholar

  • [19]

    Peng Z, Kong LX. Polym. Degrad. Stab. 2007, 92, 1061–1071.Google Scholar

  • [20]

    Li S-D, Chen Y, Zhou J, Li P-S, Zhu C-S, Lin M-L. J. Appl. Polym. Sci. 1998, 67, 2207–2211.Google Scholar

  • [21]

    Yu HP, Zeng ZQ, Lu G, Wang QF. Eur. Polym. J. 2008, 44, 453–464.Google Scholar

  • [22]

    Coats AW, Redfern JP. Nature 1964, 201, 68–69.Google Scholar

  • [23]

    Tomaszewicz E, Kotfica M. J. Therm. Anal. Calorim. 2004, 77, 25–31.Google Scholar

  • [24]

    Hatakeyama T, Quinn FX. Thermal Analysis: Fundamentals and Applications to Polymer Science. John Wiley: New York, 1994.Google Scholar

  • [25]

    Phadnis AB, Deshpande VV. Thermochim. Acta 1983, 62, 361–367.Google Scholar

  • [26]

    Meng X, Huang Y, Yu H, Lv Z. Polym. Degrad. Stab. 2007, 92, 962–967.Google Scholar

  • [27]

    Núñez L, Fraga F, Núñez MR, Villanueva M. Polymer 2000, 41, 4635–4641.Google Scholar

  • [28]

    Chen Y, Wang Q. Polym. Degrad. Stab. 2007, 92, 280–291.Google Scholar

  • [29]

    Gabal MA. Thermochim. Acta 2003, 402, 199–208.Google Scholar

  • [30]

    Straszko J, Olszak-Humienik M, Mozejko J. J. Therm. Anal. Calorim. 2000, 59, 935–942.Google Scholar

  • [31]

    Prado AGS, Torres JD, Martins PC, Pertusatti J, Bolzon LB, Faria EA. J. Hazard. Mater. 2006, 136, 585–588.Google Scholar

  • [32]

    Militký J, Šesták J. Thermochim. Acta 1992, 203, 31–42.Google Scholar

  • [33]

    Roy S, Gupta BR, Maiti BR. J. Elastomers Plast. 1990, 22, 280–294.Google Scholar

About the article

Corresponding authors: Lingxue Kong, Institute for Frontier Materials, Deakin University, Waurn Ponds Vic 3216, Australia; and Zheng Peng, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; and Institute for Frontier Materials, Deakin University, Waurn Ponds Vic 3216, Australia


Received: 2013-02-24

Accepted: 2013-04-07

Published Online: 2013-05-15

Published in Print: 2013-07-01


Citation Information: Journal of Polymer Engineering, Volume 33, Issue 4, Pages 331–335, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2013-0040.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Pallab Das and Pankaj Tiwari
Thermochimica Acta, 2017, Volume 654, Page 191
[3]
Euis Hermiati, M. Adly Rahandi Lubis, Lucky Risanto, R. Permana Budi Laksana, and Lukmanul Hakim Zaini
Procedia Chemistry, 2015, Volume 16, Page 376

Comments (0)

Please log in or register to comment.
Log in