Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino


IMPACT FACTOR 2017: 0.778

CiteScore 2017: 0.77

SCImago Journal Rank (SJR) 2017: 0.244
Source Normalized Impact per Paper (SNIP) 2017: 0.551

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 33, Issue 8

Issues

Effect of processing technology on the morphological, mechanical and electrical properties of conductive polymer composites

Anett Király
  • Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferenc Ronkay
  • Corresponding author
  • Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-12 | DOI: https://doi.org/10.1515/polyeng-2013-0038

Abstract

Conducting carbon/polypropylene (PP) and carbon/poly(butylene terephthalate) (PBT) composites containing crystalline natural graphite and carbon black (CB) were prepared by compression and injection molding. The effect of the processing technology on the electrical, mechanical, and morphological properties was investigated. Determination of the constant torque at the end of the mixing process and differential scanning calorimetric (DSC) measurements showed that graphite had better connectivity with the more polar matrix (PBT) than with the less polar one (PP). Scanning electron microscopy (SEM) studies showed that compression molding results in a homogeneous structure, while injection molding results in a skin-core structure with different orientations. Layered electrical conductivity studies showed that the electrical conductivity of the compression molded samples did not change along the thickness of the sample, while that of the injection molded samples changed throughout the material, which is due to the different structures developed with each type of processing.

Keywords: carbon black; compression molding; conductive polymer composite; graphite; injection molding

References

  • [1]

    Planes E, Flandin L, Alberola N. Energy Procedia 2012, 20, 311–323.Google Scholar

  • [2]

    Kim M, Lim JW, Kim KH, Lee DG. Compos. Struct. 2013, 96, 569–575.Google Scholar

  • [3]

    Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q, Fu Q. eXPRESS Polym. Lett. 2012, 6, 159–168.Google Scholar

  • [4]

    Szentes A, Varga Cs, Horvath G, Bartha L, Konya Z, Haspel H, Szel J, Kukovecz A. eXPRESS Polym. Lett. 2012, 6, 494–502.Google Scholar

  • [5]

    Bouatia S, Mighri F, Bousmina M. Fuel Cells 2008, 8, 120–128.Google Scholar

  • [6]

    Yakisir D, Mighri F, Bousmina M. Macromol. Rapid Comm. 2006, 27, 1596–1602.Google Scholar

  • [7]

    Müller A, Kauranen P, von Ganski A, Hell B. J. Power Sources 2006, 154, 467–471.Google Scholar

  • [8]

    Antunes RA, de Oliveira MCL, Ett G, Ett V. J. Power Sources 2011, 196, 2945–2961.Google Scholar

  • [9]

    Wakabayashi K, Pierre C, Diking DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM. Macromolecules 2008, 41, 1905–1908.Google Scholar

  • [10]

    Huang J, Baird DG, McGrath JE. J. Power Sources 2005, 150, 110–119.Google Scholar

  • [11]

    Tucker KW, Weeks GP. 1997, US Patent 5614312.Google Scholar

  • [12]

    Derieth T, Bandlamudi G, Beckhaus P, Kreuz C, Mahlendorf F, Heinzel A. J. New Mater. Electrochem. Syst. 2008, 11, 21–29.Google Scholar

  • [13]

    Mighri F, Huneault MA, Champagne MF. Polym. Eng. Sci. 2004, 44, 1755–1765.Google Scholar

  • [14]

    Du F, Fischer J, Winey K. Phys. Rev. B 2005, 72, 1–4.Google Scholar

  • [15]

    Behnam A, Guo J, Ural A. J. App. Phys. 2007, 102, 044313.Google Scholar

  • [16]

    Tiusanen J, Vlasveld D, Vourinen J. Compos. Sci. Technol. 2012, 72, 1741–1752.Google Scholar

  • [17]

    Bauhofer W, Kovacs JZ. Compos. Sci. Technol. 2009, 69, 1486–1498.Google Scholar

  • [18]

    Eken AE, Tozzi EJ, Klingenberg DJ, Bauhofer W. Polymer 2011, 52, 5178–5185.Google Scholar

  • [19]

    Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I. Polymer 2010, 51, 201–210.Google Scholar

  • [20]

    Alig I, Lellinger D, Engel M, Skipa T, Pötschke P. Polymer 2008, 49, 1902–1909.Google Scholar

  • [21]

    Kovacs JZ, Velagala BS, Schulte K, Bauhofer W. Compos. Sci. Technol. 2007, 67, 922–928.Google Scholar

  • [22]

    Zhang BF, Jiang AY, Liu DB, Wu HH, Zou JC. Adv. Mat. Res. 2012, 472–475, 1059–1062.Google Scholar

  • [23]

    Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yong CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF, Hsiao YH. J. Power Sources 2008, 185, 1225–1232.Google Scholar

  • [24]

    Karger-Kocsis J. Polypropylene: Structure, Blends and Composites, 1st ed., Chapman & Hall: Cambridge, 1995.Google Scholar

  • [25]

    Karger-Kocsis J. Polypropylene: An A-Z Reference, 1st ed., Kluwer Academic Publishers: London, 1999.Google Scholar

  • [26]

    Wu HH, Feng LF, Jiang AY, Zhang BF. Polym. J. 2011, 43, 930–936.Google Scholar

  • [27]

    Li J, Zhou C, Gang W. Polym. Test. 2003, 22, 217–223.Google Scholar

  • [28]

    Wu Z, Zhou C, Zhu N. Polym. Test. 2001, 21, 479–483.Google Scholar

  • [29]

    He F, Fan J, Lau S. Polym. Test. 2008, 27, 964–970.Google Scholar

  • [30]

    Causin V, Marega C, Marigo A, Ferrara G, Ferraro A. Eur. Polym. J. 2006, 42, 3153–3161.Google Scholar

  • [31]

    Ferreira CI, Dal Castel C, Ovideo MAS, Mauler RS. Thermochim. Acta 2013, 533, 40–48.Google Scholar

  • [32]

    Király A, Ronkay F. Polym. Composite. 2013, 34, 1195–1203.Google Scholar

  • [33]

    Brandup, J, Immergut, EH. Polymer Handbook 3, 1st ed., Wiley: New York, 1988.Google Scholar

  • [34]

    Jeh JT, Runt JP. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 1543–1550.Google Scholar

  • [35]

    Nichols ME, Robertson RE. J. Polym. Sci., Part B: Polym. Phys. 1992, 30, 755–768.Google Scholar

  • [36]

    Krupa I, Novák I, Chodák I. Synth. Met. 2004, 145, 245–252.Google Scholar

  • [37]

    Wu H, Lu C, Zhang W, Zhang X. Mater. Design 2013, 52, 621–.Google Scholar

  • [38]

    Király A, Ronkay F. Polym. Polym. Compos. 2013, 21, 93–100.Google Scholar

About the article

Corresponding author: Ferenc Ronkay, Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3, Hungary, e-mail:


Received: 2013-02-23

Accepted: 2013-08-15

Published Online: 2013-09-12

Published in Print: 2013-11-01


Citation Information: Journal of Polymer Engineering, Volume 33, Issue 8, Pages 691–699, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2013-0038.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J. Sweeney, P. E. Spencer, D. Vgenopoulos, M. Babenko, F. Boutenel, P. Caton-Rose, and P. D. Coates
Mechanics of Time-Dependent Materials, 2017
[2]
Duxin Li, Qian Chen, Yisha Yang, Yue Chen, and Chunguang Xiao
Plastics, Rubber and Composites, 2017, Volume 46, Number 6, Page 266
[3]
Anett Király and Ferenc Ronkay
Polymer Testing, 2015, Volume 43, Page 154
[4]
E. Planes, F. Gloaguen, and L. Flandin
Composites Science and Technology, 2015, Volume 110, Page 17

Comments (0)

Please log in or register to comment.
Log in