Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino

IMPACT FACTOR 2017: 0.778

CiteScore 2017: 0.77

SCImago Journal Rank (SJR) 2017: 0.244
Source Normalized Impact per Paper (SNIP) 2017: 0.551

See all formats and pricing
More options …
Volume 33, Issue 8


Thermodynamic modeling of polyamide-6 (PA-6)/cellulose acetate (CA) blend membrane prepared via casting technique

Ayman El-Gendi
  • Corresponding author
  • National Research Center, Chemical Engineering and Pilot Plant Department, El Buhouth Street, Dokki, Cairo 12311, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heba Abdallah
  • National Research Center, Chemical Engineering and Pilot Plant Department, El Buhouth Street, Dokki, Cairo 12311, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-17 | DOI: https://doi.org/10.1515/polyeng-2013-0132


Thermodynamic behavior of a ternary system with one low molecular weight component, formic acid (FA) as the solvent, water (non-solvent), and two high molecular weight polymers [polyamide-6 (PA-6) and cellulose acetate (CA)] was investigated using an extended modified Flory-Huggins model. Where, all chemicals were purchased from Leuna Werke AG (Germany). The model was solved by MATLAB SIMULINK software manufactured in the USA. The predicted results from the model explained that the miscibility of the two blend polymers, PA-6 and CA, completed over all compositions at room temperature, and the minimum point where the miscibility of the two polymers completed was in the composition of 0.2 volume fraction of PA-6 at Gibbs free energy change on mixing (ΔGm) of -1.74015 kJ/mole. The critical temperature (Tc) for superiority properties of the polymer blend solution are in the range between the upper critical saturation temperature (UCST) 323K and the lower critical saturation temperature (LCST) 338K. The diffusion model on the solution of the immersion precipitation process in the coagulation bath indicates that the solvent volume fractions increase with time, while the polymer solution volume fraction decreases, due to solvent removal from the polymer solution and membrane formation. According to the mathematical model, it was found that the annealing temperature can affect the densification of the membrane top layer. However, the heat treatment process leads to a decrease in thickness of the membrane bottom layer, as a result of reduced and distributed membrane pores.

Keywords: cellulose acetate; heat treatment; immersion precipitation; polyamide-6 membrane; ternary system; thermodynamic behavior


  • [1]

    Valerie GA, Mayes AM. Macromolecules 2001, 34, 1894–1907.Google Scholar

  • [2]

    Abdallah H, Ali SS. International Review of Chemical Engineering (I.RE.CH.E.) 2012, 4, 455–465.Google Scholar

  • [3]

    Randon J, Mardilovich PP, Govyadinov AN, Paterson R. J. Colloid Interf. Sci. 1995, 169, 335–341.Google Scholar

  • [4]

    Barani H, Hajir Bahrami S. Macromol. Res. 2007, 15, 605–609.Google Scholar

  • [5]

    Bazargan AM, Gholamvand Z, Naghavi M, Shayegh MR, Sadrnezhaad SK. Funct. Mater. Lett. 2009, 2, 113–119.Google Scholar

  • [6]

    Wang XL, Qian HJ, Chen LJ, Yuan Lu Z, Sheng Li Z. J. Membr. Sci. 2008, 311, 251–258.Google Scholar

  • [7]

    Wa K, Leea D, Chanb PK, Feng X. Chem. Eng. Sci. 2004, 59, 1491–1504.Google Scholar

  • [8]

    Mulder MHV, Basic Principles of Membrane Technology, Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.Google Scholar

  • [9]

    Altinkaya SA, Ozbas B. J. Membr. Sci.2004, 230, 71–89.Google Scholar

  • [10]

    Menut P, Pochat-Bohatier C, Deratani A, Dupuy C, Guilbert S. Desalination 2002, 145, 11–16.Google Scholar

  • [11]

    Ali SS, Abdallah H. International Review of Chemical Engineering (I.RE.CH.E.) 2012, 4, 316–323.Google Scholar

  • [12]

    Miller-Chou BA, Koenig JL. Prog. Polym. Sci. 2003, 28, 1223–1270.Google Scholar

  • [13]

    Yip Y, McHugh AJ. J. Membr. Sci. 2006, 271, 163–176.Google Scholar

  • [14]

    Leea H, Krantzb WB, Tak Hwang S. J. Membr. Sci. 2010, 354, 74–85.Google Scholar

  • [15]

    Krantza WB, Greenbergb AR, Hellman DJ. J. Membr. Sci. 2010, 354, 178–188.Google Scholar

  • [16]

    Chang BH, Chan Bao Y. Chem. Eng. Sci. 2003, 58, 2931–2936.Google Scholar

  • [17]

    Rawajefa A. Desalination 2005, 179, 265–272.Google Scholar

  • [18]

    El-Gendi A, Ali SS, Ahmed SA, Talaat HA. Membr. Wat. Treat. 2012, 3, 185–200.Google Scholar

  • [19]

    Hansen CM, Hanson Solubility Parameters: A User’s Handbook. CRC Press: Boca Raton, FL, 2000.Google Scholar

  • [20]

    Bouyera D, Werapuna W, Pochat-Bohatiera C, Deratani A. J. Membr. Sci. 2010, 349, 97–112.Google Scholar

  • [21]

    Khare VP, Greenberg AR, Krantz WB. J. Membr. Sci. 2005, 258, 140–156.Google Scholar

  • [22]

    Hea X, Chenb C, Jiangc Z, Su Y. J. Membr. Sci. 2011, 371, 108–116.Google Scholar

  • [23]

    Min J, Su M. Appl. Therm. Eng. 2010, 30, 991–997.Google Scholar

  • [24]

    Velu S, Muruganandam L. J. Chem. Bio. Phy. Sci. Sec. B 2011–2012, 2, 163–171.Google Scholar

  • [25]

    Ghaemi N, Madaeni SS, Alizadeh A, Daraei P, Vatanpour V, Falsafi M. Desalination 2012, 290, 99–106.Google Scholar

  • [26]

    Ganesh BM, Isloor AM, Padaki M. Desalination 2010, 287, 103–108.Google Scholar

  • [27]

    Gedde UW, Polymer Physics, Kluwer: Dordrecht, 1999.Google Scholar

  • [28]

    Lefebvre AA, Lee JH, Balsara NP, Hammouda B. J. Polym. Sci., Polym. Phys. Ed. 2000, 38, 1926–1930.Google Scholar

  • [29]

    Sanchez IC, Lacombe RH. Macromolecules 1978, 11, 1145–1156.Google Scholar

  • [30]

    Hegde C, Isloor AM, Padaki M, Ismail AF, Lau WJ. Membr. Wat. Treat. 2012, 3, 25–34.Google Scholar

  • [31]

    Rahimpour A, Madaeni SS, Amirinejad M, Mansourpanah Y, Zereshki S. J. Membr. Sci. 2009, 330, 189–204.Google Scholar

About the article

Corresponding author: Ayman El-Gendi, National Research Center, Chemical Engineering and Pilot Plant Department, El Buhouth Street, Dokki, Cairo 12311, Egypt, e-mail:

Received: 2013-06-03

Accepted: 2013-08-12

Published Online: 2013-09-17

Published in Print: 2013-11-01

Citation Information: Journal of Polymer Engineering, Volume 33, Issue 8, Pages 701–712, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2013-0132.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in