Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino


IMPACT FACTOR 2018: 1.072

CiteScore 2018: 1.17

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.691

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 34, Issue 9

Issues

Reinforcement of carboxylated acrylonitrile-butadiene rubber (XNBR) with graphene nanoplatelets with varying surface area

Anna Laskowska
  • Corresponding author
  • Institute of Polymer and Dye Technology, Technical University of Lodz, Stefanowskiego 12/16, Lodz 90–924, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Marzec
  • Institute of Polymer and Dye Technology, Technical University of Lodz, Stefanowskiego 12/16, Lodz 90–924, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marian Zaborski
  • Institute of Polymer and Dye Technology, Technical University of Lodz, Stefanowskiego 12/16, Lodz 90–924, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gisele Boiteux
  • Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, UMR CNRS 5223, 15 Bd A. Latarjet, 69622 Villeurbanne, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-06 | DOI: https://doi.org/10.1515/polyeng-2013-0149

Abstract

Graphene nanoplatelets (xGnP-C) with specific surface areas varying from 300 to 750 m2/g were investigated as novel reinforcing fillers for carboxylated acrylonitrile- butadiene rubber (XNBR). The effects of graphene nanoflakes loadings up to 15 parts per hundred rubber (phr) on the rheometric characteristics, stress-strain behavior, crosslink density (ν), resistance to UV radiation and thermo-oxidative aging of the XNBR/ZnO/graphene xGnP-C composites were investigated. Substantial improvement in the mechanical properties of XNBR with increased contents of xGnP-C filler was achieved. It was found that the addition of 5 phr of graphene significantly increased UV stability, tensile strength (TS) and modulus at 100%, 200% and 300% elongation of rubber material. The effect was more pronounced for composites containing graphene with the highest specific surface area 750 m2/g. The chemical information on the functional groups on the xGnP-C surface was obtained by X-ray photoelectron spectroscopy (XPS) method. In this case, the reinforcing effect of graphene xGnP-C may result from an additional chemical bonding which is possible between the -COOH groups of the rubber and the reactive, oxygen-containing groups on the filler surface.

Keywords: carboxylated acrylonitrile-butadiene rubber; elastomeric composites; graphene; mechanical properties; UV stability

References

  • [1]

    Vadukumpully S, Paul J, Valiyaveettil S. Carbon 2009, 47, 3288–3294.Google Scholar

  • [2]

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV. Proc. Natl. Acad. Sci. 2005, 102, 10451–10453.Google Scholar

  • [3]

    Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Science 2007, 315, 49–493.Google Scholar

  • [4]

    Oostinga JB, Heersche HB, Liu X, Morpurgo A, Vandersypen MK. Nat. Mater. 2008, 7, 151–157.PubMedGoogle Scholar

  • [5]

    Duplock EJ, Scheffler M, Lindan PJD. Phys. Rev. Lett. 2004, 92, 225502.PubMedGoogle Scholar

  • [6]

    Zhang Y, Small JP, Amori MES, Kim P. Phys. Rev. Lett. 2005, 94, 176803.PubMedGoogle Scholar

  • [7]

    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Chem. Mater. 1999, 11, 771–778.Google Scholar

  • [8]

    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. Prog. Polym. Sci. 2011, 36, 638–670.Google Scholar

  • [9]

    Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S. Polymer 2011, 52, 4001–4010.Google Scholar

  • [10]

    Kim HM, Lee JK, Lee HS. Thin Solid Films 2011, 519, 7766–7771.Google Scholar

  • [11]

    Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM. Carbon 2011, 49, 5107–5116.Google Scholar

  • [12]

    Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW. Polymer 2011, 52, 1837–1846.Google Scholar

  • [13]

    Kim H, Abdala AA, Macosko CW. Macromolecules 2010, 43, 6515–6530.Google Scholar

  • [14]

    Bai X, Wan C, Zhang Y, Zhai Y. Carbon 2011, 49, 1608–1613.Google Scholar

  • [15]

    Kujawski M, Pearse JD, Smela E. Carbon 2010, 48, 2409–2417.Google Scholar

  • [16]

    Khan U, May P, O’Neill A, Coleman JN. Carbon 2010, 48, 4035–4041.Google Scholar

  • [17]

    Nawaz K, Khan U, Ul-Haq N, May P, O’Neill, Coleman JN. Carbon 2012, 50, 4489–4494.Google Scholar

  • [18]

    Menes O, Cano M, Benedito A, Gimenez E, Castell, Maser WK, Benito AM. J. Comp. Sci. Tech. 2012, 72, 1595–1601.Google Scholar

  • [19]

    Appel AK, Thomann R, Mulhaupt R. Polymer 2012, 53, 4931–4939.Google Scholar

  • [20]

    Cai D, Jin J, Yusoh K, Rafik R, Song M. J. Comp. Sci. Tech. 2012, 72, 702–707.Google Scholar

  • [21]

    Yadav SK, Cho JW. J Appl. Surf. Sci. 2013, 266, 360–367.Google Scholar

  • [22]

    Hu H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J. Polymer 2012, 53, 3378–3385.Google Scholar

  • [23]

    Flory PJ, Rehner J. J. Chem. Phys. 1943, 11, 521–526.Google Scholar

  • [24]

    Zaborski M, Kosmalska A, Gulinski J. Gummi Kunstst. 2005, 58, 354–357.Google Scholar

  • [25]

    Bandyopadhyay S, De PP, Tripathy DK, De SK. Polymer 1996, 37, 353–357.Google Scholar

  • [26]

    Ismail H, Tan S, Poh BT. J. Elastomers Plast. 2001, 33, 251–262.Google Scholar

  • [27]

    Arroyo M, Lopez-Manchado MA, Herrero B. Polymer 2003, 44, 2447–2453.Google Scholar

  • [28]

    El-Sabbagh SH, Yehia AA. Egypt. J. Solids 2007, 30, 157–173.Google Scholar

  • [29]

    Ghari HS, Shakouri Z. Rubber Chem. Technol. 2012, 85, 132–146.Google Scholar

  • [30]

    Mehrabi M, Ghari HS. Am. J. Eng. Res. 2013, 2, 62–64.Google Scholar

  • [31]

    Sombatsompop N. J. Sci. Soc. Thailand 1998, 24, 199–204.Google Scholar

  • [32]

    Mandal UK, Tripathy DK, De SK. Plast. Rubber Comp. Proc. Appl. 1995, 24, 19–25.Google Scholar

  • [33]

    Kulia T, Bose S, Khanra, Kim NH, Rhee KY, Lee JH. Composites A 2011, 42, 1856–1861.Google Scholar

About the article

Corresponding author: Anna Laskowska, Institute of Polymer and Dye Technology, Technical University of Lodz, Stefanowskiego 12/16, Lodz 90–924, Poland, e-mail:


Received: 2013-06-25

Accepted: 2014-01-26

Published Online: 2014-03-06

Published in Print: 2014-12-01


Citation Information: Journal of Polymer Engineering, Volume 34, Issue 9, Pages 883–893, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2013-0149.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A Pegoretti, H Mahmood, D Pedrazzoli, and K Kalaitzidou
IOP Conference Series: Materials Science and Engineering, 2016, Volume 139, Page 012004
[2]
I. Smaoui, A. Domatti, M. Kharrat, M. Dammak, and G. Monteil
Fullerenes, Nanotubes and Carbon Nanostructures, 2016, Volume 24, Number 12, Page 769

Comments (0)

Please log in or register to comment.
Log in