Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino

10 Issues per year

IMPACT FACTOR 2016: 0.658

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.251
Source Normalized Impact per Paper (SNIP) 2015: 0.462

See all formats and pricing
More options …
Volume 36, Issue 6


The effect of pressure and temperature on microthermoforming thermoplastic films integrated in the injection moulding process

Ariane Jungmeier
  • Corresponding author
  • Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 9, 91058 Erlangen-Tennenlohe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-02 | DOI: https://doi.org/10.1515/polyeng-2015-0232


Injection moulding is a widespread large-scale production technology for the manufacturing of thermoplastic parts, with small wall thicknesses limiting the feasible flow length. Introducing microthermoforming into the injection moulding process with dynamic mould temperature control enables the production of film-based, plane microstructured parts with further three-dimensional functional structures (e.g. for handling or for fitting in devices/assembly groups). Investigations show that considerable forming is possible with pressures up to 140 bar and forming temperatures far below the glass transition temperature of 50-μm-thick polycarbonate films in cycle times of <3 min. Generally speaking, the novel technology is expected to allow for multifunctional, thin-walled microstructured parts at large scales with short cycle times.

Keywords: forming behaviour; injection moulding; microthermoforming; process design; thermoplastic material


  • [1]

    Friebel D, Schnabel R. Microsystems Technology in Germany 2012, Trias Consult, Berlin, 2012, pp. 14–16.Google Scholar

  • [2]

    Mehling M, Tay S. Curr. Opin. Biotechnol. 2014, 25, 95–102.Google Scholar

  • [3]

    Streets AM, Huang Y. Curr. Opin. Biotechnol. 2014, 25, 69–77.Google Scholar

  • [4]

    Underhill GH, Galie P, Chen CS, Bhatia SN. Annu. Rev. Cell Dev. Biol. 2012, 28, 385–410.Google Scholar

  • [5]

    Schwarzmann P. Thermoforming: A Practical Guide, Illig A, Ed., Hanser: Munich, 2001.Google Scholar

  • [6]

    Throne JL. Understanding Thermoforming, Hanser: Munich, 2008.Google Scholar

  • [7]

    Throne JL. Technology of Thermoforming, Hanser: Munich, 1996.Google Scholar

  • [8]

    Seefried A. Zum Thermoformen von vernetztem Polyamid, Lehrstuhl für Kunststofftechnik, Ed., Ph.D. thesis, Erlangen, 2015.Google Scholar

  • [9]

    Bauwens JC, Bauwens-Crowet C, Homès G. J. Polym. Sc.: Part A2 1969, 7, 1745–1754.Google Scholar

  • [10]

    Cao K, Wang Y, Wang Y. Int. J. Solid Struct. 2014, 51, 2539–5248.Google Scholar

  • [11]

    Mulliken AD, Boyce MC. Int. J. Solid Struct. 2006, 43, 1331–1356.Google Scholar

  • [12]

    Dreuth H, Heiden C. Sens. Actuators A Phys. 1999, 78, 198–204.Google Scholar

  • [13]

    Chang J-H, Yang S-Y. Microsyst. Technol. 2003, 10, 76–80.Google Scholar

  • [14]

    Truckenmüller R, Rummler Z, Schaller T, Schomburg WK. J. Micromech. Microeng. 2002, 12, 375–379.Google Scholar

  • [15]

    Truckenmüller R, Giselbrecht S, Rivron N, Gottwald E, Saile V, van den Berg A, Wessling M, van Blitterswijk C. Adv. Mater. 2011, 23, 1311–1329.Google Scholar

  • [16]

    Truckenmüller R, Giselbrecht S. IEEE Proc. Nanobiotechnol. 2004, 151, 163–166.Google Scholar

  • [17]

    Truckenmüller R, Giselbrecht S, van Blitterswijk C, Dambrowsky N, Gottwald E, Mappes T, Rolletschek A, Saile V, Trautmann C, Weibezahn KF, Welle A. Lab Chip 2008, 8, 1570–1579.Google Scholar

  • [18]

    Focke M, Kosse D, Al-Bamerni D, Lutz S, Müller C, Reinecke H, Zengerle E, von Stetten F. J. Micromech. Microeng. 2011, 21, 1–11.Google Scholar

  • [19]

    Giselbrecht S, Gietzelt T, Gottwald E, Guber AE, Trautmann C, Truckenmüller R, Weibezahn KF. IEEE Proc. Nanobiotechnol. 2004, 151, 151–157.Google Scholar

  • [20]

    Heilig M, Giselbrecht S, Guber A, Worgull M. Microsyst. Technol. 2010, 16, 1221–1231.Google Scholar

  • [21]

    Heilig M, Schneider M, Ide T, Worgull M. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP 2010, 2010, pp. 289–294.Google Scholar

  • [22]

    Focke M, Kosse D, Müller C, Reinecke H, Zengerle E, von Stetten F. Lab Chip 2010, 10, 1365–1386.Google Scholar

  • [23]

    Giessauf J, Pillwein G, Steinbichler G. Kunststoffe Int. 2008, 98, 57–62.Google Scholar

  • [24]

    Jaroschek C, Cernjak D. Kunststoffe Int. 2010, 100, 29–31.Google Scholar

  • [25]

    Waterkotte B, Bally F, Nikolov PM, Waldbaur A, Rapp BE, Truckenmüller R, Lahann J, Schmitz K, Giselbrecht S. Adv. Funct. Mater. 2014, 24, 442–450.Google Scholar

  • [26]

    Fernekorn U, Hampl J, Weise F, Augspurger C, Hildmann C, Klett M, Läffert A, Gebinoga M, Weibezahn K-F, Schlingloff G, Worgull M, Schneider M, Schober A. Eng. Life Sci. 2011, 11, 133–139.Google Scholar

  • [27]

    Seefried A, Drummer D. SPE Proc. ANTEC Las Vegas (USA) 2014, 60, 2400–2407.Google Scholar

About the article

Corresponding author: Ariane Jungmeier, Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 9, 91058 Erlangen-Tennenlohe, Germany, e-mail:

Received: 2015-05-28

Accepted: 2015-09-15

Published Online: 2015-12-02

Published in Print: 2016-08-01

Conflict of interest statement: The author declares that there is no financial or other substantive conflict of interest that might be construed to influence the results or their interpretation. All sources of financial support for the project are disclosed.

Citation Information: Journal of Polymer Engineering, Volume 36, Issue 6, Pages 597–605, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2015-0232.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in