Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino

9 Issues per year


IMPACT FACTOR 2016: 0.658

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.251
Source Normalized Impact per Paper (SNIP) 2015: 0.462

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 36, Issue 7 (Sep 2016)

Issues

Ablation and thermo-mechanical tailoring of EPDM rubber using carbon fibers

Muhammad Asghar
  • Department of Polymer Engineering and Technology, College of Engineering and Emerging Technologies, University of the Punjab, Lahore, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadeem Iqbal / Sadia Sagar Iqbal
  • Department of Polymer Engineering and Technology, College of Engineering and Emerging Technologies, University of the Punjab, Lahore, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohsin Farooq
  • Department of Polymer Engineering and Technology, College of Engineering and Emerging Technologies, University of the Punjab, Lahore, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tahir Jamil
  • Department of Polymer Engineering and Technology, College of Engineering and Emerging Technologies, University of the Punjab, Lahore, Pakistan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-17 | DOI: https://doi.org/10.1515/polyeng-2015-0337

Abstract

Carbon fibers (CFs) are incorporated into ethylene propylene diene monomer (EPDM) rubber to fabricate charring elastomeric ablative composites for ultrahigh temperature applications. Ablation characteristics of the ablative composites were evaluated using ASTM E285-08. Variant content incorporation of short CFs in the basic composite formulation reduced the backface temperature acclivity and the ablation rate rose up to 48% and 78%, correspondingly. Thermal stability and endothermic capability were improved with increasing short fiber contents in the rubber matrix. Experimental thermal conductivity measurement results elucidate that thermal conductivity reduces 60% at 473 K with 6 wt% addition of the fibers. A remarkable improvement was scrutinized in the tensile strength and rubber hardness with increasing fiber to matrix ratio. Scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) analysis of the composite specimens revealed the uniform dispersion of CFs within the host matrix, formation of voids during ablation, char-reinforcement interaction and composition of the charred ablators and the impregnated fibers.

Keywords: carbon fiber; high temperature properties; polymer-matrix composites (PMCs); thermo-mechanical

References

  • [1]

    Bahramian AR, Kokabi M, Famili MHN, Beheshty MH. Polymer 2006, 47, 3661–3673.Google Scholar

  • [2]

    Sagar S, Iqbal N, Maqsood A, Javaid U. J. Therm. Anal. Calorim. 1–7.Google Scholar

  • [3]

    Khan MB, Iqbal N, Haider Z. Key Eng. Mater. 2010, 442, 34–40.Google Scholar

  • [4]

    Yu QC, Wan H. J. Inorg. Mater. 2012, 27, 157–161.Google Scholar

  • [5]

    Hu L, Cheng J, Teng H. J. Solid Rock. Tech. 2000, 23, 58–63.Google Scholar

  • [6]

    Iqbal N, Sagar S, Khan MB, Rafique HM. Polym. Eng. Sci. 2013, 54, 255–263.Google Scholar

  • [7]

    Iqbal N, Sagar S, Khan MB, Rafique HM. J. Compos. Mater. 2013, 48, 1221–1231.Google Scholar

  • [8]

    Iqbal N, Khan MB, Sagar S, Maqsood A. J. Appl. Polym. Sci. 2013, 128, 2439–2446.Google Scholar

  • [9]

    Sagar S, Iqbal N, Maqsood A. J. Reinf. Plast. Compos. 2013, 32, 1052–1061.Google Scholar

  • [10]

    Bhuvaneswari C, Sureshkumar M, Kakade S, Gupta M. Def. Sci. J. 2006, 56, 309–320.Google Scholar

  • [11]

    Natali M, Monti M, Puglia D, Kenny JM, Torre L. Composites, Part A 2011, 43, 174–182.Google Scholar

  • [12]

    Bassyouni M, Iqbal N, Iqbal SS, Abdel-hamid S-S, Abdel-Aziz M, Javaid U, Khan MB. Polym. Degrad. Stab. 2014, 110, 195–202.Google Scholar

  • [13]

    Alagar M, Ashok Kumar A, Mahesh K, Dinakaran K. Eur. Polym. J. 2000, 36, 2449–2454.Google Scholar

  • [14]

    Golfman Y. J. Adv. Mater. 2009, 41, 34–39.Google Scholar

  • [15]

    Iqbal N, Sagar S, Khan MB, Bassyouni MI, Khan ZM. J. Appl. Polym. Sci. 2013, 130, 4392–4400.Google Scholar

  • [16]

    Malas A, Das CK. J. Mater. Sci. 2012, 47, 2016–2024.Google Scholar

  • [17]

    Singh S, Guchhait P, Bandyopadhyay G, Chaki T. Composites, Part A 2012, 44, 8–15.Google Scholar

  • [18]

    Rathinasamy P, Balamurugan P, Balu S, Subrahmanian V. J. Appl. Polym. Sci. 2003, 91, 1111–1123.Google Scholar

  • [19]

    Jiang Y, Zhang X, He J, Yu L, Yang R. Polym. Degrad. Stab. 2011, 96, 949–954.Google Scholar

  • [20]

    Ghassemieh E. Polym. Compos. 2009, 30, 1657–1667.Google Scholar

  • [21]

    Barbosa SE, Capiati NJ, Kenny JM. Polym. Compos. 2004, 21, 377–386.Google Scholar

  • [22]

    Das A, Mahaling RN, Stockelhuber KW, Heinrich G. Compos. Sci. Tech. 2011, 71, 276–281.Google Scholar

  • [23]

    Zaman W, Li K, Ikram S, Li W, Zhang D, Guo L. Corros. Sci. 2012, 61, 134–142.Google Scholar

  • [24]

    Iqbal N, Sagar S, Khan MB. Int. J. Eng. Technol. 2014, 6, 162–167.Google Scholar

  • [25]

    Agari Y, Uno T. J. Appl. Polym. Sci. 1985, 30, 2225–2235.Google Scholar

  • [26]

    Guan Y, Zhang LX, Zhang LQ, Lu YL. Polym. Degrad. Stab. 2011, 96, 808–817.Google Scholar

  • [27]

    Firouzmanesh M, Azar AA. J. Appl. Polym. Sci. 2003, 88, 2455–2461.Google Scholar

  • [28]

    Sun W, Xiong X, Huang B, Li G, Zhang H, Chen Z, Zheng XL. Carbon 2009, 47, 3368–3371.Google Scholar

  • [29]

    Qiu J, Cao X, Tian C, Zhang J. J. Mater. Sci. Tech. 2005, 21, 92–94.Google Scholar

  • [30]

    Patton R, Pittman C, Wang L, Hill J, Day A. Compos. Part A: Appl. Sci. Manufact. 2002, 33, 243–251.Google Scholar

  • [31]

    Torre L, Kenny J, Maffezzoli A. J. Mater. Sci. 1998, 33, 3137–3143.Google Scholar

  • [32]

    Torre L, Kenny J, Boghetich G, Maffezzoli A. J. Mater. Sci. 2000, 35, 4563–4566.Google Scholar

  • [33]

    Bahramian AR, Kokabi M, Famili MHN, Beheshty MH. J. Hazard. Mater. 2008, 150, 136–145.Google Scholar

  • [34]

    Cho D, Il Yoon B. Compos. Sci. Tech. 2001, 61, 271–280.Google Scholar

  • [35]

    Lin WS. Int. J. Heat Mass Transfer 2005, 48, 5504–5519.Google Scholar

  • [36]

    Ogasawara T, Ishikawa T, Yamada T, Yokota R, Itoh M, Nogi S. J. Compos. Mater. 2002, 36, 143–157.Google Scholar

  • [37]

    Park JK, Kang TJ. Carbon 2002, 40, 2125–2134.Google Scholar

  • [38]

    Torre L, Kenny J, Maffezzoli A. J. Mater. Sci. 1998, 33, 3145–3149.Google Scholar

  • [39]

    Najim TS, Amel M, Barbooti MM. Leonardo Electron. J. Pract. Technol. 2008, 7, 34–46.Google Scholar

  • [40]

    Sarkhel G, Choudhury A. J. Mater. Sci. 2008, 108, 3442–3453.Google Scholar

  • [41]

    Dijkhuis KAJ, Noordermeer JWM, Dierkes WK. Eur. Polym. J. 2009, 45, 3302–3312.Google Scholar

  • [42]

    Gao G, Zhang Z, Zheng Y, Jin Z. Polym. Compos. 2010, 31, 1223–1231.Google Scholar

  • [43]

    Gao G, Zhang Z, Li X, Meng Q, Zheng Y, Jin Z. J. Appl. Polym. Sci. 2010, 118, 266–274.Google Scholar

  • [44]

    Mahapatra S, Tripathy D. J. Appl. Polym. Sci. 2006, 102, 1600–1608.Google Scholar

  • [45]

    Augustine JM, Maiti SN, Gupta AK. J. Appl. Polym. Sci. 2012, 125, E478–E485.Google Scholar

About the article

Corresponding author: Nadeem Iqbal, Center for Undergraduate Studies, University of the Punjab, Lahore, Pakistan, e-mail:


Received: 2015-07-27

Accepted: 2015-09-29

Published Online: 2015-12-17

Published in Print: 2016-09-01


Citation Information: Journal of Polymer Engineering, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2015-0337.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in