Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino

10 Issues per year


IMPACT FACTOR 2017: 0.778

CiteScore 2017: 0.77

SCImago Journal Rank (SJR) 2017: 0.244
Source Normalized Impact per Paper (SNIP) 2017: 0.551

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 37, Issue 9

Issues

Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering

Alan Saúl Álvarez-Suarez
  • Universidad Autónoma de Baja California, Escuela de Ciencias de la Ingeniería y Tecnología, Tijuana, B.C., C.P. 21500, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo Alberto López-Maldonado
  • Universidad Autónoma de Baja California, Facultad de Ciencias Químicas e Ingeniería, Tijuana, BC, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olivia A. Graeve
  • University of California, San Diego, Department of Mechanical and Aerospace Engineering, La Jolla, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabián Martinez-Pallares
  • University of California, San Diego, Department of Mechanical and Aerospace Engineering, La Jolla, CA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Enrique Gómez-Pineda
  • Universidad Autónoma de Baja California, Escuela de Ciencias de la Ingeniería y Tecnología, Tijuana, B.C., C.P. 21500, México
  • Universidad Autónoma de Baja California, Facultad de Ciencias Químicas e Ingeniería, Tijuana, BC, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mercedes Teresita Oropeza-Guzmán / Ana Leticia Iglesias
  • Universidad Autónoma de Baja California, Escuela de Ciencias de la Ingeniería y Tecnología, Tijuana, B.C., C.P. 21500, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theodore Ng / Eduardo Serena-Gómez
  • Escuela de Ciencias de Ciencias de la Salud, Universidad Autónoma de Baja California, Tijuana, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Jesús Villarreal-Gómez
  • Corresponding author
  • Universidad Autónoma de Baja California, Escuela de Ciencias de la Ingeniería y Tecnología, Tijuana, B.C., C.P. 21500, México
  • Universidad Autónoma de Baja California, Facultad de Ciencias Químicas e Ingeniería, Tijuana, BC, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-08 | DOI: https://doi.org/10.1515/polyeng-2016-0423

Abstract

Porous polymeric scaffolds have been applied successfully in the biomedical field. This work explores the use of an ultrasonic probe to generate cavitation in a polymeric solution, thus producing pores in the polymeric scaffolds. Porous polymeric structures with average pore sizes ranging from 5 to 63 μm and porosity of 6–44% were fabricated by a process consisting of sonication, flash freezing, and lyophilization of poly(lactic-co-glycolic acid) (PLGA), gelatin (GEL), chitosan (CS) and poly(vinyl alcohol) (PVAL) solutions. Pore structure was characterized by scanning electron microscopy (SEM) and image analysis software. The infrared spectra were analyzed before and after the fabrication process to observe any change in the chemical structure of the polymers. A water absorption test indicated the susceptibility of the samples to retain water in their structure. TGA results showed that GEL experienced degradation at 225°C, CS had a decomposition peak at 280°C, the thermal decomposition of PLGA occurred at 375°C, and PVAL showed two degradation regions. The DSC analysis showed that the glass transition temperature (Tg) of GEL, CS, PLGA and PVAL occurred at 70°C, 80°C, 60°C and 70°C, respectively. The fabricated porous structures demonstrated similar physical characteristics to those found in bone and cartilage.

Keywords: grafting substitute; porous scaffold; sonication; tissue engineering

References

  • [1]

    Robert JK, Marco NH, Leon EG, Theo HS. Materials 2009, 2, 833–856.CrossrefGoogle Scholar

  • [2]

    Karageorgiou V, Kaplan D. Biomaterials 2005, 26, 5474–5491.CrossrefGoogle Scholar

  • [3]

    Thomson CR, Shung AK, Yaszemski MJ, Mikos AG, Eds., Principles of Tissue Engineering, 4th ed., Academic Press: San Diego, 2000.Google Scholar

  • [4]

    Mikos AG, Temenoff JS. Electron. J. Biotechnol. 2000, 3, 23–24.Google Scholar

  • [5]

    Ma PX. Mater. Today 2000, 7, 30–40.Google Scholar

  • [6]

    Holy C, Shoichet M, Davies J. Polymer scaffold having microporous polymer struts defining interconnected macropores. United States; US6379962 B1, 2002.Google Scholar

  • [7]

    Langer R, Peppas NA. AIChE J. 2003, 49, 2990–300.CrossrefGoogle Scholar

  • [8]

    Kellomaki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Tormala P. Biomaterials 2000, 21, 2495–2505.CrossrefGoogle Scholar

  • [9]

    Wen Z, Jiaojiao L, Kaixiang J, Wenlong L, Xuefeng Q, Chenrui L. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 1181–1194.CrossrefGoogle Scholar

  • [10]

    Thais MC, Rosemary AC, Paulo JA, Ana BQ, Javier SF. J. Food Eng. 2008, 87, 191–199.CrossrefGoogle Scholar

  • [11]

    Venkatesan J, Kim SK. Mar. Drugs 2010, 8, 2252–2266.CrossrefGoogle Scholar

  • [12]

    Pinto J, Athanassiou A, Fragouli D. J. Phys. D Appl. Phys. 2016, 49, 145601–145608.CrossrefGoogle Scholar

  • [13]

    Yin N, Chen S, Li Z, Ouyang Y, Hu W, Tang L, Zhang W, Zhou B, Yang J, Xu Q, Wang H. Mater. Lett. 2010, 81, 131–134.Google Scholar

  • [14]

    Petchwattana N, Covavisaruch S. Adv. Mat. Res. 2011, 306–307, 869–873.Google Scholar

  • [15]

    Pavia FC, La Carrubba V, Piccarolo S, Brucato V. J. Biomed. Mater. Res. A 2008, 86, 459–466.Google Scholar

  • [16]

    Reignier J, Huneault MA. Polymer 2006, 47, 4703–4717.CrossrefGoogle Scholar

  • [17]

    Jiang L, Liu J, Wu D, Li H, Jin R. Thin Solid Films 2006, 510, 241–246.CrossrefGoogle Scholar

  • [18]

    Kausar A. J. Compos. Mater. 2015, 49, 3497–3506.CrossrefGoogle Scholar

  • [19]

    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. J. Biomed. Mater. Res. 1970, 4, 433–456.CrossrefGoogle Scholar

  • [20]

    Hannink G, Arts JJC. Int. J. Care Injured 2011, 42, S22–S25.Google Scholar

  • [21]

    Pereira Jr VA, Queiroz de Arruda IN. Food. Hydrocoll. 2015, 44, 180–188.Google Scholar

  • [22]

    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Int. J. Polymer Sci. 2011, 2011, 1–19.Google Scholar

  • [23]

    Place ES, George JH, Williams K, Stevens MM, George JH. Chem. Soc. Rev. 2009, 38, 1139–1151.CrossrefGoogle Scholar

  • [24]

    Petrochenko P, Narayan RJ. J. Long Term Eff. Med. Implants 2010, 20, 303–315.CrossrefGoogle Scholar

  • [25]

    Changfeng C, Li L, Tao H, Qiong W, Yue’e F. Int. J. BiolMacromol. 2013, 62, 188–193.CrossrefGoogle Scholar

  • [26]

    ASTM D570-98(2010)e1, Standard Test Method for Water Absorption of Plastics, ASTM International: West Conshohocken, PA, 2010, www.astm.org.

  • [27]

    Torres-Sanchez C, Corney JR. Ultrason. Sonochem. 2008, 15, 408–415.CrossrefGoogle Scholar

  • [28]

    Filipczak K, Janik I, Kozicki M, Ulanski P, Rosiak JM, Pajewski LA, Olkowski R, Wozniak P, Chroscicka A, Lewandowska-Szumiel M. E. Polym. 2005, 5, 1, 110–122.Google Scholar

  • [29]

    Pan Z, Ding J. Interface Focus 2012, 2, 366–377.CrossrefGoogle Scholar

  • [30]

    Rupali K. Design and development of surgical dressings for advanced wound management. SNDT Womens University. Thesis, 2010.Google Scholar

  • [31]

    Ikeda T, Ikeda K, Yamamoto K, Ishizaki H, Yoshizawa Y, Yanagiguchi K, Yamada S, Hayashi Y. BioMed. Res. Inter. 2014, 2014, 1–8.Google Scholar

  • [32]

    Renner R, Rogalski C, Friedlein H, Simon JC. JDDG: J. Dtsch. Dermatol. Ges. 2006, 4, 468–475.CrossrefGoogle Scholar

  • [33]

    Joseph DB, Eds., Tissue Engineering and Artificial Organs. 4th ed., CRC Press; Taylor and Francis: Hartford, CT 2006.Google Scholar

  • [34]

    Song H, Chen A, Wang S, Kang Y, Ye S, Liu Y, Wu W. Materials 2014, 7, 2459–2473.CrossrefGoogle Scholar

  • [35]

    Correlo VM, Pinho ED, Pashkuleva I, Bhattacharya M, Neves NM, Reis RL. Macromol. Biosci. 2007, 7, 354–363.CrossrefGoogle Scholar

  • [36]

    Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H. Biotechnol. Adv. 2011, 29, 322–337.CrossrefGoogle Scholar

  • [37]

    Taurozzi JS, Hackley VA, Wiesner MR. National Institute of Standards and Technology, Materials Science and Engineering Laboratory: Gaithersburg, MD20899, USA, 2010.

  • [38]

    Pereira Jr, VA, de Arruda INQ, Stefani R. Food. Hydrocoll. 2015, 43, 180–188.CrossrefGoogle Scholar

  • [39]

    Frazier SD, Srubar III, WV. Mater. Sci. Eng. C 2016, 62, 467–473.CrossrefGoogle Scholar

  • [40]

    Guirguis OW, Moselhey MTH. Natural Sci. 2012, 4, 57–67.CrossrefGoogle Scholar

  • [41]

    Lakatos E, Magyar L, Bojtár I. J. Med. Eng. 2014, 2014, 1–7.Google Scholar

  • [42]

    Poitout DG. Biomechanics and Biomaterials in Orthopedics, Springer: London 2016.Google Scholar

About the article

Received: 2016-11-24

Accepted: 2017-07-11

Published Online: 2017-09-08

Published in Print: 2017-11-27


Citation Information: Journal of Polymer Engineering, Volume 37, Issue 9, Pages 943–951, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2016-0423.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in