Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino


IMPACT FACTOR 2018: 1.072

CiteScore 2018: 1.17

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.691

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 39, Issue 5

Issues

Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels

Moslem Tavakol
  • Corresponding author
  • Department of Chemical & Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
  • Central Iran Research Complex, NSTI, Yazd, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ebrahim Vasheghani-Farahani
  • Corresponding author
  • Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Amin Mohammadifar
  • Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, SøltoftsPlads, 2800, Kgs. Lyngby, Denmark
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maryam Dehghan-Niri
  • Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-12 | DOI: https://doi.org/10.1515/polyeng-2018-0366

Abstract

In the present study, gamma irradiation was applied to promote the mechanical properties of enzyme- mediated in situ forming hydrogels prepared with tyramine-functionalized gum tragacanth (TA-GT). For this purpose, after gamma irradiation of powder or hydrocolloid solution of gum tragacanth (GT), the physiochemical and rheological properties of GT solution, and resultant hydrogel was investigated. In situ forming hydrogels were prepared via horseradish peroxidase catalyzed coupling reaction of TA-GT in the presence of hydrogen peroxide. Gamma irradiation led to a decrease in GT molecular weight and solution viscosity. Also, the solubility of GT improved and the separation of water soluble/swellable part of gum samples became easier, using gamma irradiation. In addition, by gamma irradiation of GT powder at doses of 5–15 kGy, a polymeric solution with higher concentration could be prepared that resulted in the promotion of hydrogels storage modulus. Further increase of irradiation dose did not improve storage modulus due to the extra decrease of gum molecular weight.

Keywords: gamma irradiation; injectable hydrogel; physiochemical properties; rheological properties; tragacanth

References

  • [1]

    Nguyen MK, Lee DS. Macromol. Biosci. 2010, 10, 563–579.CrossrefGoogle Scholar

  • [2]

    Ruel-Gariépy E, Leroux J-C. Eur. J. Pharm. Biopharm. 2004, 58, 409–426.CrossrefGoogle Scholar

  • [3]

    Tan H, Marra KG. Materials 2010, 3, 1746–1767.CrossrefGoogle Scholar

  • [4]

    Dewettinck DVSDK. Appl. Microbiol. Biotechnol. 2003, 63, 10–21.CrossrefGoogle Scholar

  • [5]

    Moghbel A, Hemmati AA, Agheli H, Rashidi I, Amraee K. Archiv. Iranian Med. 2005, 8, 257–262.Google Scholar

  • [6]

    Sadat Hosseini M, Hemmati K, Ghaemy M. Int. J. Biol. Macromol. 2016, 82, 806–815.CrossrefGoogle Scholar

  • [7]

    Hemmati K, Ghaemy M. Int. J. Biol. Macromol. 2016, 87, 415–425.CrossrefGoogle Scholar

  • [8]

    Fattahi A, Sadrjavadi K, Golozar MA, Varshosaz J, Fathi M-H, Mirmohammad-Sadeghi H. Carbohydr. Polym. 2013, 97, 277–283.CrossrefGoogle Scholar

  • [9]

    Kiani A, Asempour H. J. Appl. Polym. Sci. 2012, 126, 1477–1484.Google Scholar

  • [10]

    Fattahi A, Petrini P, Munarin F, Shokoohinia Y, Golozar MA, Varshosaz J, Tanzi MC. J. Appl. Polym. Sci. 2013, 129, 2092–2102.CrossrefGoogle Scholar

  • [11]

    Haeri SMJ, Sadeghi Y, Salehi M, Farahani RM, Mohsen N. Biologicals 2016, 44, 123–128.CrossrefGoogle Scholar

  • [12]

    Kulanthaivel S, Rathnam VSS, Agarwal T, Pradhan S, Pal K, Giri S, Maiti TK, Banerjee I. J. Mater. Chem. B 2017, 5, 4177–4189.CrossrefGoogle Scholar

  • [13]

    Ranjbar-Mohammadi M, Bahrami SH. Mater. Sci. Eng. C 2015, 4871–4879.Google Scholar

  • [14]

    Ranjbar-Mohammadi M, Bahrami SH, Joghataei MT. Mater. Sci. Eng. C 2013, 33, 4935–4943.CrossrefGoogle Scholar

  • [15]

    Tavakol M, Vasheghani-Farahani E, Soleimani M, Mohammadifar MA, Hashemi-Najafabadi S, Hafizi M. Iranian J. Biotechnol. 2013, 12, 15811.Google Scholar

  • [16]

    Dehghan-Niri M, Tavakol M, Vasheghani-Farahani E, Ganji F. J. Biomater. Appl. 2015, 29, 1343.CrossrefGoogle Scholar

  • [17]

    Al-Assaf S, Phillips GO, Williams PA, du Plessis TA. Nucl. Instrum. Meth. B. 2007, 265, 37–43.CrossrefGoogle Scholar

  • [18]

    Şen M, Yolaçan B, Güven O. Nucl. Instrum. Meth. B. 2007, 265, 429–433.CrossrefGoogle Scholar

  • [19]

    Hai L, Bang Diep T, Nagasawa N, Yoshii F, Kume T. Nucl. Instrum. Meth. B. 2003, 208, 466–470.CrossrefGoogle Scholar

  • [20]

    Alijani S, Balaghi S, Mohammadifar MA. Int. J. Biol.Macromol. 2011, 49, 471–479.CrossrefGoogle Scholar

  • [21]

    Jacobs GP, Simes R. J. Pharm. Pharmacol. 1979, 31, 333–334.CrossrefGoogle Scholar

  • [22]

    Teimouri S, Abbasi S, Sheikh N. Food Hydrocolloids 2016, 59, 9–16.CrossrefGoogle Scholar

  • [23]

    Mohammadifar MA, Musavi SM, Kiumarsi A, Williams PA. Int. J. Biol. Macromol. 2006, 38, 31–39.CrossrefGoogle Scholar

  • [24]

    Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Biomaterials 2010, 31, 3103–3113.CrossrefGoogle Scholar

  • [25]

    Balaghi S, Mohammadifar MA, Zargaraan A. Food Biophys 2010, 5, 59–71.CrossrefGoogle Scholar

  • [26]

    Yoshii F, Zhao L, Wach RA, Nagasawa N, Mitomo H, Kume T. Nucl. Instrum. Meth. B. 2003, 208, 320–324.CrossrefGoogle Scholar

  • [27]

    Lee DW, Choi WS, Byun MW, Park HJ, Yu Y-M, Lee CM. J. Agric. Food Chem. 2003, 51, 4819–4823.CrossrefGoogle Scholar

  • [28]

    Makuuchi K. Radiat. Phys. Chem. 2010, 79, 267–271.CrossrefGoogle Scholar

  • [29]

    Moreira Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Biomaterials 2012, 33, 1281–1290.CrossrefGoogle Scholar

  • [30]

    Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, Ai J. Biomater. Sci. 2018, 6, 1286–1298.CrossrefGoogle Scholar

About the article

Received: 2018-12-07

Accepted: 2019-03-01

Published Online: 2019-04-12

Published in Print: 2019-05-01


Citation Information: Journal of Polymer Engineering, Volume 39, Issue 5, Pages 442–449, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2018-0366.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in