Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino


IMPACT FACTOR 2018: 1.072

CiteScore 2018: 1.17

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.691

Online
ISSN
2191-0340
See all formats and pricing
More options …
Volume 39, Issue 5

Issues

Effects of process conditions on the heat transfer coefficient at the polymer-mold interface and tensile strength of thin-wall injection molding parts

Laiyu Zhu
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083 Hunan, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liping Min
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083 Hunan, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xianglin Li
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083 Hunan, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhanyu Zhai
  • State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083 Hunan, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dietmar Drummer
  • Institute of Polymer Technology (LKT), University of Erlangen-Nuremberg, Am Weichselgarten 9, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bingyan JiangORCID iD: https://orcid.org/0000-0002-5548-3340
Published Online: 2019-04-11 | DOI: https://doi.org/10.1515/polyeng-2018-0369

Abstract

Generally, the strength at the weld line of the injection molded part is very weak. The heat transfer coefficient (HTC) between the polymer melt and the mold cavity surface was analyzed to solve this problem. The surface roughness of the mold cavity and the material of the mold insert were changed to adjust the interface environment between the polymer melt and the mold cavity surface. HTC was obtained by combing the experimental measurement with the theoretical calculation. In the current study, the influence of HTC on the tensile strength of the weld line of the molded specimen was investigated. The results show that the weld line strength of the molded specimen increases with the decrease in HTC between the polymer and the mold cavity surface. Meanwhile, the decrease in the surface roughness of the mold cavity or replacing the mold material with lower thermal conductivity can reduce the value of the HTC between the polymer and the mold effectively and can delay the cooling rate of the hot polymer melt. This provides a new idea to solve thin-wall injection molding weld line defects.

Keywords: heat transfer coefficient; process condition; thin-wall injection molding

References

  • [1]

    Katoh T, Tokuno R, Zhang Y, Abe M, Akita K, Akamatsu M. Microsyst. Technol. 2008, 14, 1507–1514.CrossrefGoogle Scholar

  • [2]

    Dang F, Tabata O, Kurokawa M, Ewis A, Zhang L, Yamaoka Y, Shinohara S, Shinohara Y, Ishikawa M, Baba Y. Anal. Chem. 2005, 77, 2140–2146.CrossrefGoogle Scholar

  • [3]

    Sun D, Lin G, Sui G. Polym. Composite 2017, 38, 185–191.CrossrefGoogle Scholar

  • [4]

    Zhou Y, Yu F, Deng H, Huang Y, Li G, Fu Q. J. Phys. Chem. B 2017, 121, 6257.CrossrefGoogle Scholar

  • [5]

    Yi Z, Hua D, Yu F, Feilong Y, Hongwei B, Qin Z, Feng C, Ke W, Qiang F. Polymer 2016, 99, 49–58.CrossrefGoogle Scholar

  • [6]

    Whetten A, Belcher D. Annual Technical Conference (ANTEC). 1994, 40, 593–600.Google Scholar

  • [7]

    Maloney RP, Poslinski AJ. Technical papers of the Annual Technical Conference – Society of Plastics Engineers Incorporated. Society of Plastics Engineers Inc., 1998, 1, 542–546.Google Scholar

  • [8]

    Chen CS, Chen TJ, Chien RD, Chen SC. Int. Commun. Heat Mass. 2007, 34, 448–455.CrossrefGoogle Scholar

  • [9]

    Fassett J. Plast. Eng. 1995, 51, 35–37.Google Scholar

  • [10]

    Lin HY, Young WB. Appl. Math. Model. 2009, 33, 3746–3755.CrossrefGoogle Scholar

  • [11]

    Tosello G, Gava A, Hansen HN, Lucchetta G. Int. J. Adv. Manuf. Tech. 2010, 47, 81–97.CrossrefGoogle Scholar

  • [12]

    Wang G, Zhao G, Guan Y. J. Appl. Polym. Sci. 2013, 128, 1339–1352.Google Scholar

  • [13]

    Huang MS, Huang YL. Int. J. Heat Mass Tran. 2010, 53, 2414–2423.CrossrefGoogle Scholar

  • [14]

    Saito T, Satoh I, Kurosaki Y. Polym. Eng. Sci. 2002, 42, 2418–2429.CrossrefGoogle Scholar

  • [15]

    Nguyen-Chung T, Jüttner G, Löser C, Pham T, Gehde M. Polym. Eng. Sci. 2010, 50, 165–173.CrossrefGoogle Scholar

  • [16]

    Young WB. Appl. Math Model. 2007, 31, 1798–1806.CrossrefGoogle Scholar

  • [17]

    Wei YX. Study on viscous dissipation and convective heat transfer in filling flow of micro injection molding. Dalian University of Technology: Dalian, China, Dissertation, 2006.Google Scholar

  • [18]

    Yu L, Lee LJ, Koelling KW. Polym. Eng. Sci. 2004, 44, 1866–1876.CrossrefGoogle Scholar

  • [19]

    Nakao M, Tsuchiya K, Sadamitsu T, Ichikohara Y, Ohba T, Ooi T. Int. J. Adv. Manuf. Tech. 2008, 38, 426–432.CrossrefGoogle Scholar

  • [20]

    Liu Y, Gehde M. Int. J. Adv. Manuf. Tech. 2016, 84, 1325–1333.Google Scholar

  • [21]

    Somé SC, Delaunay D, Faraj J, Bailleul JL, Boyard N, Quilliet S. Appl. Therm. Eng. 2015, 84, 150–157.CrossrefGoogle Scholar

  • [22]

    Dawson A, Rides M, Allen CRG, Urquhart JM. Polym. Test. 2008, 27, 555–565.CrossrefGoogle Scholar

  • [23]

    Yao L, Gehde M. Appl. Therm. Eng. 2015, 80, 238–246.CrossrefGoogle Scholar

  • [24]

    Mennig G, Stoeckhert K. Mold-making Handbook (Third Edition). 2013, 471–606.Google Scholar

  • [25]

    Verasorroche J, Kelly A, Brown E, Coates P, Karnachi N, Harkin-Jones E, Li K, Deng J. Appl. Therm. Eng. 2013, 53, 405–413.CrossrefGoogle Scholar

About the article

Received: 2018-11-28

Accepted: 2019-03-17

Published Online: 2019-04-11

Published in Print: 2019-05-01


Funding Source: National Basic Research Program of China

Award identifier / Grant number: 2012CB025905

Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 51575540

Award identifier / Grant number: 51405519

The authors would like to acknowledge the financial support from the National Basic Research Program of China (grant no. 2012CB025905) and the support from the National Natural Science Foundation of China, Funder Id: http://dx.doi.org/10.13039/501100001809 (grant nos. 51575540 and 51405519).


Citation Information: Journal of Polymer Engineering, Volume 39, Issue 5, Pages 493–500, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2018-0369.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in